RSC Advances
Page 4 of 6
Conclusions
In summary, we introduced a well-defined homogeneous Ni(salphen) catalyst as “metalloligand” in a porous
MOF. The Ni(salphen) units and coordinatively unsaturated Cd active sites accessible via the open MOF channels
were utilized to generate an efficient heterogeneous catalyst for the coupling reactions of CO2 with epoxides under
relatively mild conditions. The MOF catalyst features a high local density of coorperative layer Ni(salphen) motifs,
exhibiting improved catalytic performance relative to the monomeric homogeneous catalyst. This solid catalyst
can be easily recycled and reused without any apparent loss of catalytic activity after being used three times. This
work established a new strategy in the rational design of effective self-supported MOF catalysts for CO2 absorption
and in situ fixation based on functional metallosalens or metalloprophyrins.
Acknowledgements
We are grateful to the National Natural Science Foundation of China (Nos. 20932002 and 21172076), the
National Basic Research Program of China (973 Program) (No. 2011CB808600), the Natural Science Foundation
of Guangdong Province, China (No. 10351064101000000), and the Fundamental Research Funds for the Central
Universities (No. 2011ZM0044) for the financial support.
Notes and references
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China. Fax:
† Electronic supplementary information (ESI) available: Synthesis and characterization of Ni-H2L ligand and MOF 1, X-ray
crystallography, PXRD data, TGA data, nitrogen and carbon dioxide adsorption isotherms, and catalytic reaction. CCDC:
900477.
1 R. L. Paddock and S. B. T. Nguyen, J. Am. Chem. Soc., 2001, 123, 11498.
2 (a) W. Leitner, Coord. Chem. Rev., 1996, 155, 257; (b) D. J. Darensbourg and M. W. Holtcamp, Coord. Chem. Rev., 1996, 153,
155; (c) A. G. Shaikh and S. Sivaram, Chem. Rev., 1996, 96, 951.
3 (a) R. M. Haak, A. Decortes, E. C. Escudero-Adán, M. M. Belmonte, E. Martin, J. Benet-buchholz and A. W. Kleij, Inorg.
Chem., 2011, 50, 7934; (b) A.Decortes, M. M. Belmonte, J. Benet-buchholz and A. W. Kleij, Chem. Commun., 2010, 46,
4580; (c) A. Decortes, A. M, Castill and A. W. Kleij, Angew. Chem. Int. Ed., 2010, 49, 9822; (d) R. M. Haak, S. J.
Wezenberga and A. W. Kleij, Chem. Commun., 2010, 46, 2713; (e) H. W. Jing, S. K. Edulji, J. M. Gibbs, C. L. Stern, H. Y.
Zhou and S.T. Nguyen, Inorg. Chem., 2004, 43, 4315.
4 Z. Wang, G. Chen and K. Ding, Chem. Rev., 2009, 109, 322.
5 Y. Xie, Z. Zhang, T. Jiang, J. He, B. Han, T.Wu and K. Ding, Angew. Chem., Int. Ed., 2007, 46, 7255.
6 Y. Du, F. Cai, D. L. Kong and L. N. He, Green Chem., 2005, 7, 518.
7 (a) J. Q. Wang, D. L. Kong, J. Y. Chen, F. Cai and L. N. He, J. Mol. Catal. A: Chem., 2006, 249, 143; (b) T. Takahashi, T.
Watahiki, S. Kitazume,H.Yasuda and T. Sakakura, Chem. Commun., 2006, 1664; (c) T. Sakai, Y. Tsutsumi and T. Ema, Green
Chem., 2008, 10, 337.
8 (a) W. Kleist, F. Jutz, M. Maciejewski and A. Baiker, Eur. J. Inorg. Chem., 2009, 3552; (b) J. Song, Z. Zhang, S. Hu, T. Wu,
T. Jiang and B. Han, Green Chem., 2009, 11, 1031;(c) H. Y. Choa, D. A. Yanga, J. Kima, S. Y. Jeongb and W. S. Ahn, Catal.
Today, 2012, 185, 35; (d) D. A. Yang, H. Y. Cho, J. Kim, S.T. Yang and W. S. Ahn, Energy Environ. Sci., 2012, 5, 6465; (e)
C. M. Miralda, E. E. Macias, M. Zhu, P. Ratnasamy, and M. A. Carreon, ACS Catal., 2012, 2, 180. (f) X. Zhou, Y. Zhang, X.
Yang, L. Zhao and G. Wang, J. Mol. Catal. A: Chem., 2012, 361-362, 12.
9
. Ma, C. Abney, W. Lin, Chem. Soc. Rev. 2009, 38, 1248.
10 (a) C. Zhu, G. Yuan, X. Chen, Z.Yang, and Y. Cui, J. Am. Chem. Soc., 2012, 134, 8058; (b) J. M. Falkowski, C. wang, S. Liu
and W. Lin, Angew. Chem. Int. Ed., 2011, 50, 8674; (c) P. W. Roesky, A. Bhunia, Y. Lan, A. K. Powell and S. Kureti, Chem.
Commun., 2011, 47, 2035; (d) A. Bhunia, Y. lan, V. Mereacre, M. T. Gamer, A. K. Powell and P. W. Roesky, Inorg. Chem.,
2011, 50, 12697; (e) S. Jung, W. Cho, H. J. Lee and M. Oh, Angew. Chem. Int. Ed., 2009, 48, 1459; (f) G.Yuan, C.Zhu, W.
Xuan and Y. Cui, Chem.-Eur. J., 2009, 15, 6428; (g) A. Bhunia,, P. W.Roesky, Y. Lan, G. E. Kostakis and A. K.Powell,
Inorg. Chem., 2009, 48, 10483. (h) S. Jung and M. Oh, Angew. Chem. Int. Ed., 2008, 47, 2049; (i) Y. Jeon, G. S. Armatas, J.
Heo, M. G. Kanatzidis and C. A. Mirkin, Adv. Mater., 2008, 20, 2105; (j) J. Heo, Y. Jeon and C. A. Mirkin, J. Am. Chem.
Soc., 2007, 129, 7712; (k) M. Oh and C. A. Mirkin, Angew. Chem. Int. Ed., 2006, 45, 5492; (l) M. Oh and C. A. Mirkin,
Nature, 2005, 438, 651; (m) R. Kitaura, G. Onoyama, H. Sakamoto, R. Matsuda, S.Noro and S. Kitagawa, Angew. Chem.,
Int. Ed., 2004, 43, 2684.
11 (a) F. Song, C. Wang and W. Lin, Chem. Commun., 2011, 47, 8256; (b) F. Song, C. Wang, J. M. Falkowski, L. Ma and W.
Lin, J. Am. Chem. Soc., 2010, 132, 15390; (c) Y. Jeon, J. Heo and C. A. Mirkin, J. Am. Chem. Soc., 2007, 129, 7480.
12. (a) J. M. Falkowski, S. Liu , C. Wang and W. Lin, Chem. Commun., 2012, 48, 6508; (b)Y. Huang, T. Liu, J. Lin, Jian Lü, Z.
Lin, and R. Cao, Inorg. Chem., 2011, 50, 2191; (c) G. Li, C.Zhu, X. Xi and Y. Cui, Chem. Commun., 2009, 2118; (c) B.
Chen, X. Zhao, A. Putkham, K. Hong, E. B. Lobkovsky, E. J. Hurtado, A. J. Fletcher and K. M. Thomas, J. Am. Chem. Soc.,
2008,130, 6411; (e) S. Cho, B. Ma, T. S. Nguyen, J. T. Hupp and T. E. lbrecht-Schmitt, Chem. Commun., 2006, 2563.
13 P. Van der Sluis and A. L. Spek, Acta Crystallogr., Sect. A: Found. Crystallogr., 1990, A46, 194.
14 K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T. Bae and J. R. Long, Chem. Rev.,2012,
112, 724.
15 W. Tao, J. Liu, Y. Zheng and C. Sun, Chin. J. Inorg. Chem., 2011, 27, 2419.
16 X. B. Lu, B. Liang, Y. J. Zhang, Y. Z. Tian, Y.M.Wang, C. X. Bai, H. Wang and R. Zhang, J. Am. Chem. Soc., 2004, 126,
3732.
3