interest in new methods for the efficient construction of
macrocyclic peptidomimetic motifs.6
(CuAAC) reaction has proved to be especially popular in
the construction of peptide-based macrocyles.11
β-Turns represent a particularly important element of
secondarystructureintherecognition ofbioactivepeptides
and proteins by their cognate receptors, and so the ability
to successfully stabilize this motif is a key strategy in the
design of peptidomimetics.7 Notably, β-turns are also the
mostcommon type ofreverse turnfoundinmany naturally
occurring bioactive cyclic peptides, such as the clinically
important cyclosporin A and gramicidin S.
Given the importance of both naturally occurring8 and
synthetic cyclic peptides in the design and development of
new peptide-based theraputics,6,9 many approaches have
been developed to generate turn mimetic cyclic peptides.6,9,10
Of these, the Cu-catalyzed azideꢀalkyne cycloaddition
However, most of the methods described to date require
highdilutionconditions, stoichiometricamountsofcopper
catalyst and/or additives (bases), harsh reaction conditions,
and, in some cases, syringe pump addition, while providing
only low to moderate yields of the desired cyclic peptides.12
Thus, these methods are both inefficient and impractical in a
drug discovery and development setting in terms of solvent
consumption, reaction rate, and catalyst loading. Therefore,
to fully exploit the potential of this approach to the con-
struction of macrocyclic turn-mimetic peptides, a general,
mild, and catalytic method is required which can generate
these systems in high yield. In this regard, we have recently
reported a very efficient method for the synthesis of di-
versely functionalized triazole-containing macrocyles using
the CuAAC reaction,13 and here we further describe the
application of the methodology to the efficient construction
of a series of turn-mimetic cyclic tetrapeptides.
Linear tetrapeptidic macrocyclic precursors were syn-
thesized using standard peptide coupling conditions via a
fragment condensation strategy (for full synthetic details,
see Supporting Information (SI)). The optimal length of
alkynylamide and azidoalkanoyl groups at the C- and
N-termini of the tetrapeptide precursors was selected after
computational analysis of the product macrocycles for the
likely presence of a turn structure and characteristic in-
tramolecular H-bond. The azido-alkyne containing linear
tetrapeptide FPFG 1 was used as a model system for
comparison of available macrocyclization methodologies,
the results of which are outlined in Table 1.
The combination of dichloromethane as solvent and
Cu(CH3CN)4BF4 as a Cu source had proven optimal in
our earlier study of CuAAC macrocyclizations, and so we
chose to examine reaction with Cu(CH3CN)4BF4 (5 mol %)
alone at rt for 24 h. This provided a low yield of macrocycle
2 and gave primarily dimers/oligomers (Table 1, entry 1).
As anticipated from our earlier studies,13 the yield of 2 was
improved dramatically by heating and addition of a cataly-
tic amount of the ligand tris((1-benzyl-1H-1,2,3-triazolyl)-
methyl)amine (TBTA) (Table 1, entry 2). Although we had
previously examined systems containing one or two amino
acid residues,13 we were extremely gratified to demonstrate
the efficient macrocyclization of this more challenging tetra-
peptide substrate.
(6) (a) For reviews, see: (a) Driggers, E. M.; Hale, S. P.; Jinbo Lee, J.;
Terrett, N. K. Nat. Rev. Drug Discovery 2007, 7, 608. (b) Marsault, E.;
Peterson, M. L. J. Med. Chem. 2011, 54, 1961. (c) White, C. J.; Yudin,
A. K. Nat. Chem. 2011, 3, 509. (d) Pitsinos, E. N.; Vidali, V. P.;
Couladouros, E. A. Eur. J. Org. Chem. 2011, 17, 1207.
(7) (a) Tyndall, J. D. A.; Pfeiffer, B.; Abbenante, G.; Fairlie, D. P.
Chem. Rev. 2005, 105, 793. (b) Hruby, V. J.; Balse, P. M. Curr. Med.
Chem. 2000, 7, 945. (c) Kessler, H. Angew. Chem., Int. Ed. Engl. 1982, 21,
512. (d) Chou, K. C. Anal. Biochem. 2000, 286. (e) Yin, H.; Hamilton,
A. D. Angew. Chem., Int. Ed. 2005, 44, 4130. (f) Vasudev, P. G.;
Chatterjee, S.; Shamala, N.; Balaram, P. Chem. Rev. 2011, 111, 657.
(g) Loughlin, W. A.; Tyndall, J. D. A.; Glenn, M. P.; Hill, T. A.; Fairlie,
D. P. Chem. Rev. 2010, 110, PR32. (h) Haberman, A. B. Advances in the
Discovery of ProteinꢀProtein Interaction Modulators; Business Insights,
2012.
(8) Tan, N. H.; Zhou, J. Chem. Rev. 2006, 106, 840.
(9) (a) Pehere, A. D.; Abell, A. D. Org. Lett. 2012, 14, 1330. (b)
Londregan, A. T.; Farley, K. A.; Limberakis, C.; Mullins, P. B.;
Piotrowski, D. W. Org. Lett. 2012, 14, 2890. (c) Meyer, F. M.; Collins,
J. C.; Borin, B.; Bradow, J.; Liras, S.; Limberakis, C.; Mathiowetz,
A. M.; Philippe, L.; Price, D.; Song, K.; James, K. J. Org. Chem. 2012,
77, 3099. (d) MacDonald, M.; Aube, J. Curr. Org. Chem. 2001, 5, 417. (e)
Wang, Q.; Zhu, J. Chimia 2011, 65, 168. (f) Madsen, C. M.; Clausen,
M. H. Eur. J. Org. Chem. 2011, 17, 3107. (g) Hili, R.; Rai, V.; Yudin,
A. K. J. Am. Chem. Soc. 2010, 132, 2889.
(10) (a) Jacobsen, Ø.; Klaveness, Jo.; Rongved, P. Molecules 2010,
15, 6638. (b) Brik, A. Adv. Synth. Catal. 2008, 350, 1661. (c) Rajesh,
B. M.; Bhattacharya, M.; Banerji, B.; Iqbal, J. ARKIVOC 2004, (viii),
111. (d) Reid, R. C.; Kelso, M. J.; Scanlon, M. J.; Fairlie, D. P. J. Am.
Chem. Soc. 2012, 124, 5673.
(11) (a) For review on 1,2,3-triazoles in peptidomimetic chemistry,
see: Pedersen, D. S.; Abell, A. Eur. J. Org. Chem. 2011, 2399. (b) Angell,
Y. L.; Burgess, K. Chem. Soc. Rev. 2007, 36, 1674. (c) Muthana, S.; Yu,
H.; Cao, H.; Cheng, J.; Chen, X. J. Org. Chem. 2009, 74, 2928. (d)
Binauld, S.; Hawker, C. J.; Fleury, E.; Drockenmuller, E. Angew. Chem.,
Int. Ed. 2009, 48, 6654. (e) Day, J. E. H.; Sharp, S. Y.; Rowlands, M. G.;
Aherne, W.; Workman, P.; Moody, C. J. Chem.;Eur. J. 2010, 16, 2758.
(f) Holub, J. M.; Kirshenbaum, K. Chem. Soc. Rev. 2010, 39, 1325. (g)
Tannert, T.-S. Hu; Arndt, R. H.-D; Waldmann, H. Chem. Commun.
2007, 3942. (h) Marcaurelle, L. A.; Comer, E.; Dandapani, S.; Duvall,
J. R.; Gerard, B.; Kesavan, S.; Lee, M. D.; Liu, H.; Lowe, J. T.; Marie,
J.-C.; Mulrooney, C. A.; Pandya, B. A.; Rowley, A.; Ryba, T. D.; Suh,
B.-C.; Wei, J.; Young, D. W.; Akella, L. B.; Ross, N. T.; Zhang, Y.-L.;
Fass, D. M.; Reis, S. A.; Zhao, W.-N.; Haggarty, S. J.; Palmer, M.;
Foley, M. A. J. Am. Chem. Soc. 2010, 132, 16962. (i) Jacobsen, Ø.;
We compared this reaction outcome with several other
known literature methods employing stoichiometric amounts
of copper. None of these conditions offered comparable
yields (Table 1, entries 3ꢀ5).12aꢀc
€
Maekawa, H.; Ge, N.-H.; Gorbitz, C. H.; Rongved, P.; Ottersen, O. P.;
To demonstrate the scope of this peptide CuAAC-
macrocyclization protocol, a series of azido-alkyne con-
taining linear tetrapeptides were synthesized and subjected
Amiry-Moghaddam, M.; Klaveness, J. J. Org. Chem. 2011, 76, 1228.
(12) (a) Jinqiang, Z.; Kemmink, J.; Rijkers, D. T. S.; Liskamp,
R. M. J. Org. Lett. 2011, 13, 3438. (b) Rowley Kelly, A.; Wei, J.;
Kesavan, S.; Marie, J.-C.; Windmon, N.; Young, D. W.; Marcaurelle,
L. A. Org. Lett. 2009, 11, 2257. (c) Liu, Y. Q.; Zhang, L. H.; Wan, J. P.;
Li, Y. S.; Xu, Y. H.; Pan, Y. J. Tetrahedron 2008, 64, 10728. (d) Davis,
M. R.; Singh, E. K.; Wahyudi, H.; Alexander, L. D.; Kunicki, J. B.;
Nazarova, L. A.; Fairweather, K. A.; Giltrap, A. M.; Jolliffe, K. A.;
McAlpine, S. R. Tetrahedron 2012, 68, 1029. (e) Larregola, M.; Lequin,
O.; Karoyan, P.; Guianvarc’h, D.; Lavielle, S. J. Pept. Sci. 2011, 17, 632.
(f) Bock, V. D.; Perciaccante, R.; Jansen, T. P.; Hiemstra, H.; van
Maarseveen, J. H. Org. Lett. 2006, 8, 919. (g) Turner, R. A.; Oliver,
A. G.; Lokey, R. S. Org. Lett. 2007, 9, 5011–4.
(13) Chouhan, G.; James, K. Org. Lett. 2011, 13, 2754.
(14) We also screened a range of other organic bases and solid
supported bases such as PS-TBD (Polystyrene-supported bicyclic
guanidine) in this macrocyclization reaction, and none was found to
be efficient (for more details, see HPLC/ESI MS chromatograms in the
SI). For use of a heterogenous catalyst in CuAAC, see: Dervaux, B.; Du
Prez, F. E. Chem. Sci. 2012, 3, 959.
B
Org. Lett., Vol. XX, No. XX, XXXX