Ring A- and F-Modified Camptothecin Analogues
J ournal of Medicinal Chemistry, 1998, Vol. 41, No. 13 2317
(5) Sawada, S.; Okajima, S.; Aiyama, R.; Nokata, K.; Furuta, T.;
Yokokura, T.; Sugino, E.; Yamaguchi, K.; Miyasaka, T. Synthesis
and Antitumor Activity of 20(S)-Camptothecin Derivatives:
Carbamate-Linked, Water-Soluble Derivatives of 7-Ethyl-10-
hydroxycamptothecin. Chem. Pharm. Bull. 1991, 39, 1446-1454.
(6) Kingsbury, W. D.; Boehm, J . C.; J akas, D. R.; Holden, K. G.;
Hecht, S. M.; Gallagher, G.; Caranfa, M. J .; McCabe, F. L.;
Faucette, L. F.; J ohnson, R. K.; Hertzberg, R. P. Synthesis of
Water-Soluble (Aminoalkyl)camptothecin Analogues: Inhibitor
of Topoisomerase I and Antitumor Activity. J . Med. Chem. 1991,
34, 98-107.
(7) (a) Miyasaka, T.; Sawada, S.; Nokata, K.; Mutai, M. J apanese
Patent 59-51289; Chem. Abstr. 1984, 101, 91319d. (b) Wani, M.
C.; Nicholas, A. W.; Wall, M. E. Plant Antitumor Agents. 23.
Synthesis and Antileukemic Activity of Camptothecin Ana-
logues. J . Med. Chem. 1986, 29, 2358-2363.
(8) Luzzio, M. J .; Besterman, J . M.; Emerson, D. L.; Evans, M. G.;
Lackey, K.; Leitner, P. L.; McIntyre, G.; Morton, B.; Myers, P.
L.; Peel, M.; Sisco, J . M.; Sternbach, D. D.; Tong, W.; Truesdale,
A.; Uehling, D. E.; Vuong, A.; Yates, J . Synthesis and Antitumor
Activity of Novel Water Soluble Derivatives of Camptothecin as
Specific Inhibitors of Topoisomerase I. J . Med. Chem. 1995, 38,
395-401.
with water and extracted with CHCl3. The organic phase was
washed with saturated NaCl, dried (Na2SO4), and evaporated.
Column chromatography (CHCl3) of the residue gave 8-acet-
amido-3,4-dihydro-6-methoxy-1(2H)-naphthalenone (350 mg,
46%). 8-Acetamido-3,4-dihydro-6-methoxy-1(2H)-naphthale-
none (70 mg, 0.30 mmol) in 6 N HCl (7 mL) was heated at 90
°C for 1 h. The reaction mixture was concentrated, the residue
in water (10 mL) was neutralized with NaHCO3, and the
mixture was extracted with CHCl3. The combined organic
phase was washed with saturated NaCl, dried (Na2SO4), and
concentrated to afford 65 as an orange solid (54 mg, 94%).
(9S)-2,3-Dih ydr o-9-eth yl-9-h yd r oxy-5-m eth oxy-1H,12H-
ben zo[de]pyr an o[3′,4′:6,7]in dolizin o[1,2-b]qu in olin e-10,13-
(9H,15H)-d ion e (66). A mixture of 65 (47 mg, 0.25 mmol),
7b (64 mg, 0.25 mmol), and p-TsOH‚H2O (1 mg, 0.005 mmol)
in toluene (20 mL) was heated to reflux for 18 h using a Dean-
Stark trap. The solvent was removed in vacuo, and the residue
was chromatographed (CHCl3) to give 66 (35 mg, 33%): mp
265-267 °C dec; MS (EI) m/z 418; HRMS (EI) m/z 418.1539;
1H NMR (CDCl3) δ 1.02 (t, 3H, J ) 7.5 Hz), 1.8-2.0 (m, 2H),
2.1-2.3 (m, 2H), 3.1-3.2 (m, 4H), 3.98 (s, 3H), 5.15 (s, 2H),
5.31, 5.74 (ABq, 2H, J ) 16 Hz), 7.04 (d, 1H, J ) 2 Hz), 7.41
(d, 1H, J ) 2 Hz), 7.70 (bs, 1H).
(9S)-2,3-Dih yd r o-5,9-d ih yd r oxy-9-eth yl-1H,12H-ben zo-
[d e]p yr a n o[3′,4′:6,7]in d olizin o[1,2-b]q u in olin e -10,13-
(9H,15H)-d ion e (67). Compound 66 (19 mg, 0.045 mmol) in
47% HBr (0.5 mL) was brought to reflux for 3 h and was
diluted with water (0.5 mL). The precipitate obtained after
neutralizing with NaHCO3 was recrystallized (CHCl3-MeOH)
to give 67 as a yellow solid (11 mg, 60%): mp >250 °C dec;
MS (EI) m/z 404 (M+); HRMS (EI) m/z 404.1353; 1H NMR
(DMSO-d6) δ 0.89 (t, 3H, J ) 7 Hz), 1.89 (m, 2H), 2.03 (m,
2H), 3.32 (m, 4H), 5.16 (s, 2H), 5.42 (s, 2H), 6.48 (s, 1H), 6.99
(s, 1H), 7.18 (s, 1H), 10.24 (s, 1H).
(9) Cheng, C. C.; Yan S. J . The Friedlander synthesis of quinolines.
Org. React. (N.Y.) 1982, 28, 37-201.
(10) Wall, M. E.; Wani, M. C.; Natschke, S. M.; Nicholas, A. W. Plant
Antitumor Agents. 22. Isolation of 11-Hydroxycamptothecin from
Camptotheca acuminata Decne: Total Synthesis and Biological
Activity. J . Med. Chem. 1986, 29, 1553-1555.
(11) Tagawa, H.; Terasawa, H.; Ejima, A. J apanese Patent 85-233366;
Chem. Abstr. 1987, 107, 217320s.
(12) Cagnoli, N.; Martani, A.; Rossi, C. 5,8-Disubstituted Thiochro-
manones. Ann. Chim. (Rome) 1966, 56, 1075-1082; Chem. Abstr.
1967, 66, 55338j.
(13) Uyeo, S.; Mizutani, T.; Yoshitake, A.; Ito, A. 10-Isopropyl-1,7-
dimethyl-11H-naphtho-[2,1-a]fluorene. Yakugaku Zasshi 1964,
84, 458-462; Chem. Abstr. 1964, 61, 4286h.
(14) Lawton, E. A.; Mcritchie, D. D. Synthesis of Pyromellitonitrile
and Related Compounds. J . Org. Chem. 1959, 24, 26-28.
(15) Green, A. G.; Rowe, F. M. Tetrahydronaphthalene series. J .
Chem. Soc. 1919, 113, 955-973.
(16) Owton, W. M.; Brunavs, M. Synthesis of 6/7-Halotetralones.
Synth. Commun. 1991, 21, 981-987.
(17) Howe, I.; Williams, D. H. Substituent Effects in the Mass Spectra
of Some Gamma- and Beta-substituted Methyl Butyrates. J .
Chem. Soc. B 1969, 439-445.
(18) Buu-Hoi, Ng. Ph.; Xuong, N. D.; Rips, R. New Fluorine-
containing Aromatics as Potential Carcinostats. J . Org. Chem.
1957, 22, 193-197.
(9RS)-2,3-Dih yd r o-9-et h yl-9-h yd r oxy-1H ,12H -b en zo-
[d e]p yr a n o[3′,4′:6,7]in d olizin o[1,2-b]q u in olin e -10,13-
(9H,15H)-d ion e (69). 8-Amino-3,4-dihydro-1(2H)-naphtha-
lenone (68) (65 mg, 0.403 mmol), 7a (106 mg, 0.403 mmol),
and a catalytic amount of p-TsOH‚H2O in toluene (5 mL) were
heated to reflux using a Dean-Stark trap for 4 h. The
precipitate obtained after being cooled was washed with AcOEt
and acetone to give 69 (17 mg, 11%): mp >260 °C; IR (KBr)
3490, 2938, 1731, 1668, 1623, 1242, 1155 cm-1; MS (FAB) m/z
(19) Burnham, J . W.; Duncan, W. P.; Eisenbraun, E. J . Effects of
alkyl substituents in the chromic acid oxidation of tetralins. J .
Org. Chem. 1974, 39, 1416-1420.
(20) Schroeter, G.; Kindermann, E.; Dietrich, C.; Beyschlag, C.;
Fleischhauer, C.; Riebensahm, E.; Oesterlin, C. Nitro and Amino
Derivatives of Tetrahydronaphthalene. Ann. 1922, 426, 17-83;
Chem. Abstr. 1922, 16, 1763.
1
389 (M + H); H NMR (DMSO-d6) δ 0.90 (t, 3H, J ) 7 Hz),
1.93 (m, 2H), 2.0-2.2 (m, 2H), 3.0-3.4 (m, 4H), 5.26 (s, 2H),
5.43 (s, 2H), 7.10 (d, 1H, J ) 8 Hz), 7.35 (s, 1H), 7.40 (d, 1H,
J ) 8 Hz), 7.45 (t, 1H, J ) 8 Hz). Anal. (C23H20N2O4‚9/4H2O)
C, H, N.
(21) O’Brien, C. The rearrangement of ketoxime O-sulfonates to
amino ketones (The Neber rearrangement). Chem. Rev. 1964,
64, 81-90.
(22) West, C. T.; Donnelly, S. J .; Kooistra, D. A.; Doyle, M. P. Silane
Reductions in Acidic Media. II. Reductions of Aryl Aldehydes
and Ketones by Trialkylsilanes in Trifluoroacetic Acid. A Selec-
tive Method for Converting the Carbonyl Group to Methylene.
J . Org. Chem. 1973, 38, 2675-2681.
Su p p or tin g In for m a tion Ava ila ble: 1H NMR, IR, and
MS data for the intermediate compounds (7 pages). Ordering
information is given on any current masthead page.
Refer en ces
(1) (a) Sugimori, M.; Ejima, A.; Ohsuki, S.; Uoto, K.; Mitsui, I.;
Matsumoto, K.; Kawato, Y.; Yasuoka, M.; Sato, K.; Tagawa, H.;
Terasawa, H. Antitumor Agents. 7. Synthesis and Antitumor
Activity of Novel Hexacyclic Camptothecin Analogues. J . Med.
Chem. 1994, 37, 3033-3039. (b) Abbreviations: DMF, dimeth-
ylformamide; DMSO, dimethyl sulfoxide; PPTS, pyridinium
p-toluenesulfonate; PPA, polyphosphoric acid; tetralin, 1,2,3,4-
tetrahydronaphthalene; tetralone, 3,4-dihydro-1(2H)-naphtha-
lenone.
(2) Wall, M. E.; Wani, M. C.; Cook, C. E.; Palmer, K. H.; McPhail,
A. T.; Sim, G. A. Plant Antitumor Agents. I. The Isolation and
Structure of Camptothecin, a Novel Alkaloidal Leukemia and
Tumor Inhibitor from Camptotheca acuminata. J . Am. Chem.
Soc. 1966, 88, 3888-3890.
(3) Giovanella, B. C.; Stehlin, J . S.; Wall, M. E.; Wani, M. C.;
Nicholas, A. W.; Liu, L. F.; Silber, R.; Potmesil, M. DNA
Topoisomerase I-Targeted Chemotherapy of Human Colon Can-
cer in Xenografts. Science 1989, 246, 1046-1048 and references
therein.
(4) Hsiang, Y.-H.; Hertzberg, R.; Hecht, S.; Liu, L. F. Camptothecin
Induces Protein-linked DNA Breaks via Mammalian DNA
Topoisomerase I. J . Biol. Chem. 1985, 260, 14873-14878.
(23) Nakamura, K. Determination of 3,4-Dihydro-5(and 8)-nitro-
1(2H)-naphthalenone. J . Pharm. Soc. J pn. 1942, 62, 236-239;
Chem. Abstr. 1950, 44, 9869i.
(24) (a) Wani, M. C.; Nicholas, A. W.; Wall, M. E. Plant Antitumor
Agents. 23. Synthesis and Antileukemic Activity of Campto-
thecin Analogues. J . Med. Chem. 1986, 29, 2358-2363. (b) Wani,
M. C.; Nicholas, A. W.; Manikumar, G.; Wall, M. E. Plant
Antitumor Agents. 25. Total Synthesis and Antileukemic Activ-
ity of Ring A Substituted Camptothecin Analogues. Structure-
Activity Correlations. J . Med. Chem. 1987, 30, 1774-1779. (c)
Yaegashi, T.; Sawada, S.; Nagata, H.; Furuta, T.; Yokokura, T.;
Miyasaka, T. Synthesis and Antitumor Activity of 20(S)-Camp-
tothecin Derivatives. A-Ring-Substituted 7-Etheylcamptothecins
and Their E-Ring-Modified Water-Soluble Derivatives. Chem.
Pharm. Bull. 1994, 42, 2518-2525.
(25) Regression lines derived from activity data of compounds 10,
14, 20, 31, 34, 39, 44, 51, 52, 57, 62, 66, 67, 69, and 70 with
EXCEL analytical tool; r represents correlation coefficient.
(26) (a) Palm, K.; Stenberg, P.; Luthman, K.; Artursson, P. Polar
Molecular Surface Properties Predict the Intestinal Absorption