10.1002/ejoc.202100474
European Journal of Organic Chemistry
COMMUNICATION
J. Oyamada, M. Nishiura, Z. Hou, Angew. Chem. Int. Ed. 2011, 50,
10720-10723; d) T. Sakurai, Y. Matsuoka, T. Hanataka, N. Fukuyama,
T. Namikoshi, S. Watanabe, M. Murata, Chem. Lett. 2012, 41, 374-376;
e) G. Choi, H. Tsurugi, K. Mashima, J. Am. Chem. Soc. 2013, 135,
13149-13161; f) L. Rubio-Perez, M. Iglesias, J. Munarriz, V. Polo, V.
Passarelli, J. J. Perez-Torrente, L. A. Oro, Chem. Sci. 2017, 8, 4811-
4822; g) H. Wang, G. Wang, P. Li, Org. Chem. Front. 2017, 4, 1943-
1946; h) W. Xu, J. H. Pek, N. Yoshikai, Asian J. Org. Chem. 2018, 7,
1351-1354; i) S. Liu, Q. Lin, C. Liao, J. Chen, K. Zhang, Q. Liu, B. Li,
Org. Biomol. Chem. 2019, 17, 4115-4120; j) S. Liu, S. Zhang, Q. Lin, Y.
Huang, B. Li, Org. Lett. 2019, 21, 1134-1138; k) Q. Lin, Z. Lin, M. Pan,
Q. Zheng, H. Li, X. Chen, C. Darcel, P. H. Dixneuf, B. Li, Org. Chem.
Front. 2021, 8, 514-521.
(JCYJ20190809142809370), and Guangdong Provincial Key
Laboratory of Catalysis (No. 2020B121201002).
Keywords: organosilanes • arylbenzyl bis(silanes) • C−H
functionalization • dehydrogenative cross-coupling •
intermolecular C−H silylation
[1]
For selected books and reviews, see: a) M. Brook, Silicon in Organic,
Organometallic and Polymer Chemistry, Wiley, New York, 2000; b) The
Chemistry of Organic Silicon Compounds (Eds.: Z. Rappoport, Y.
Apeloig), Wiley, Chichester, 2003; c) Organosilicon Chemistry: Novel
Approaches and Reactions (Eds.: T. Hiyama, M. Oestreich), Wiley,
Weinheim, 2019; d) E. Langkopf, D. Schinzer, Chem. Rev. 1995, 95,
1375-1408; e) S. Yamaguchi, K. Tamao, J. Chem. Soc. Dalton Trans.
1998, 3693-3702; f) W. Bains, R. Tacke, Curr. Opin. Drug Discovery
Dev. 2003, 6, 526-543; g) S. Yamaguchi, K. Tamao, Chem. Lett. 2005,
34, 2-7; h) M. Shimizu, T. Hiyama, Synlett 2012, 23, 973-989; i) A. K.
Franz, S. O. Wilson, J. Med. Chem. 2013, 56, 388-405; j) R. Ramesh,
D. S. Reddy, J. Med. Chem. 2018, 61, 3779-3798.
[7]
a) E. M. Simmons, J. F. Hartwig, J. Am. Chem. Soc. 2010, 132, 17092-
17095; b) T. Ureshino, T. Yoshida, Y. Kuninobu, K. Takai, J. Am. Chem.
Soc. 2010, 132, 14324-14326; c) A. Kuznetsov, V. Gevorgyan, Org.
Lett. 2012, 14, 914-917; d) Y. Kuninobu, K. Yamauchi, N. Tamura, T.
Seiki, K. Takai, Angew. Chem. Int. Ed. 2013, 52, 1520-1522; e) A.
Kuznetsov, Y. Onishi, Y. Inamoto, V. Gevorgyan, Org. Lett. 2013, 15,
2498-2501; f) Q. Li, M. Driess, J. F. Hartwig, Angew. Chem. Int. Ed.
2014, 53, 8471-8474; g) T. Lee, T. W. Wilson, R. Berg, P. Ryberg, J. F.
Hartwig, J. Am. Chem. Soc. 2015, 137, 6742-6745; h) M. Murai, K.
Matsumoto, Y. Takeuchi, K. Takai, Org. Lett. 2015, 17, 3102-3105; i) T.
Shibata, T. Shizuno, T. Sasaki, Chem. Commun. 2015, 51, 7802-7804;
j) Q.-W. Zhang, K. An, L.-C. Liu, Y. Yue, W. He, Angew. Chem. Int. Ed.
2015, 54, 6918-6921; k) M. Murata, M. Takizawa, H. Sasaki, Y. Kohari,
H. Sakagami, T. Namikoshi, S. Watanabe, Chem. Lett. 2016, 45, 857-
859; l) Y. Lin, K.-Z. Jiang, J. Cao, Z.-J. Zheng, Z. Xu, Y.-M. Cui, L.-W.
Xu, Adv. Synth. Catal. 2017, 359, 2247-2252; m) B. Su, T.-G. Zhou, X.-
W. Li, X.-R. Shao, P.-L. Xu, W.-L. Wu, J. F. Hartwig, Z.-J. Shi, Angew.
Chem. Int. Ed. 2017, 56, 1092-1096; n) Q.-W. Zhang, K. An, L.-C. Liu,
Q. Zhang, H. Guo, W. He, Angew. Chem. Int. Ed. 2017, 56, 1125-1129;
o) W.-T. Zhao, Z.-Q. Lu, H. Zheng, X.-S. Xue, D. Zhao, ACS Catal.
2018, 8, 7997-8005.
[2]
For selected reviews, see: a) K. Godula, D. Sames, Science 2006, 312,
67-72; b) H. M. L. Davies, J. R. Manning, Nature 2008, 451, 417-424; c)
O. Daugulis, H.-Q. Do, D. Shabashov, Acc. Chem. Res. 2009, 42,
1074-1086; d) X. Chen, K. M. Engle, D.-H. Wang, J.-Q. Yu, Angew.
Chem., Int. Ed. 2009, 48, 5094-5115; e) I. A. I. Mkhalid, J. H. Barnard,
T. B. Marder, J. M. Murphy, J. F. Hartwig, Chem. Rev. 2010, 110, 890-
931; f) T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147-1169;
g) D. A. Colby, R. G. Bergman, J. A. Ellman, Chem. Rev. 2010, 110,
624-655; h) L. McMurray, F. O'Hara, M. J. Gaunt, Chem. Soc. Rev.
2011, 40, 1885-1898; i) J. Yamaguchi, A. D. Yamaguchi, K. Itami,
Angew. Chem., Int. Ed. 2012, 51, 8960-9009; j) J. Wencel-Delord, F.
Glorius, Nat. Chem. 2013, 5, 369-375; k) Y. Park, Y. Kim, S. Chang,
Chem. Rev. 2017, 117, 9247-9301; l) C. He, W. G. Whitehurst, M. J.
Gaunt, Chem 2019, 5, 1031-1058.
[8]
a) D. Mu, W. Yuan, S. Chen, N. Wang, B. Yang, L. You, B. Zu, P. Yu, C.
He, J. Am. Chem. Soc. 2020, 142, 13459-13468; b) B. Yang, W. Yang,
Y. Guo, L. You, C. He, Angew. Chem. Int. Ed. 2020, 59, 22217-22222;
c) W. Yuan, L. You, W. Lin, J. Ke, Y. Li, C. He, Org. Lett. 2021, 23,
1367-1372; d) S. Chen, D. Mu, P.-L. Mai, J. Ke, Y. Li, C. He, Nat.
Commun. 2021, 12, 1249; e) J. Zhu, S. Chen, C. He, J. Am. Chem.
Soc. 2021, 143, 5301-5307; f) Y. Guo, M.-M. Liu, X. Zhu, L. Zhu, C. He,
Angew. Chem. Int. Ed. 2021, DOI: 10.1002/anie.202103748.
[3]
For selected reviews, see: a) F. Kakiuchi, N. Chatani, Adv. Synth. Catal.
2003, 345, 1077-1101; b) J. F. Hartwig, Acc. Chem. Res. 2012, 45,
864-873; c) C. Cheng, J. F. Hartwig, Chem. Rev. 2015, 115, 8946-
8975; d) R. Sharma, R. Kumar, I. Kumar, B. Singh, U. Sharma,
Synthesis 2015, 47, 2347-2366; e) Z. Xu, W.-S. Huang, J. Zhang, L.-W.
Xu, Synthesis 2015, 47, 3645-3668; f) Y. Yang, C. Wang, Sci. China
Chem. 2015, 58, 1266-1279; g) X. Shang, Z.-Q. Liu, Org. Biomol.
Chem. 2016, 14, 7829-7831; h) S. Baehr, M. Oestreich, Angew. Chem.
Int. Ed. 2017, 56, 52-59; i) S. C. Richter, M. Oestreich, Trends Chem.
2020, 2, 13-27; j) L. Li, P. H. Dixneuf, Chem. Soc. Rev. 2021, DOI:
10.1039/D0CS01392G.
[9]
a) T. A. Boebel, J. F. Hartwig, J. Am. Chem. Soc. 2008, 130, 7534-
7535; b) D. W. Robbins, T. A. Boebel, J. F. Hartwig, J. Am. Chem. Soc.
2010, 132, 4068-4069; c) S. H. Cho, J. F. Hartwig, J. Am. Chem. Soc.
2013, 135, 8157-8160; d) S. H. Cho, J. F. Hartwig, Chem. Sci. 2014, 5,
694-698; e) M. A. Larsen, S. H. Cho, J. Hartwig, J. Am. Chem. Soc.
2016, 138, 762-765; f) B. Su, T.-G. Zhou, P.-L. Xu, Z.-J. Shi, J. F.
Hartwig, Angew. Chem. Int. Ed. 2017, 56, 7205-7208.
[4]
a) W. A. Gustavson, P. S. Epstein, M. D. Curtis, Organometallics 1982,
1, 884-885; b) Y. Uchimaru, A. M. M. El Sayed, M. Tanaka,
Organometallics 1993, 12, 2065-2069; c) K. Ezbiansky, P. I. Djurovich,
M. LaForest, D. J. Sinning, R. Zayes, D. H. Berry, Organometallics
1998, 17, 1455-1457; d) N. Tsukada, J. F. Hartwig, J. Am. Chem. Soc.
2005, 127, 5022-5023; e) M. Murata, N. Fukuyama, J.-i. Wada, S.
Watanabe, Y. Masuda, Chem. Lett. 2007, 36, 910-911; f) B. Lu, J. R.
Falck, Angew. Chem. Int. Ed. 2008, 47, 7508-7510; g) H. F. T. Klare, M.
Oestreich, J.-i. Ito, H. Nishiyama, Y. Ohki, K. Tatsumi, J. Am. Chem.
Soc. 2011, 133, 3312-3315; h) T. Ishiyama, T. Saiki, E. Kishida, I.
Sasaki, H. Ito, N. Miyaura, Org. Biomol. Chem. 2013, 11, 8162-8165; i)
C. Cheng, J. F. Hartwig, Science 2014, 343, 853-857; j) C. Cheng, J. F.
Hartwig, J. Am. Chem. Soc. 2015, 137, 592-595; k) C. Karmel, Z. Chen,
J. F. Hartwig, J. Am. Chem. Soc. 2019, 141, 7063-7072.
[10] a) D. Kaufmann, Chem. Ber. 1987, 120, 853-854; b) H. Nagashima, K.
Tatebe, T. Ishibashi, A. Nakaoka, J. Sakakibara, K. Itoh,
Organometallics 1995, 14, 2868-2879; c) C. Gomez, F. F. Huerta, M.
Yus, Tetrahedron 1998, 54, 1853-1866.
[11] T. Mita, K. Michigami, Y. Sato, Org. Lett. 2012, 14, 3462-3465.
[5]
[6]
a) F. Kakiuchi, M. Matsumoto, M. Sonoda, T. Fukuyama, N. Chatani, S.
Murai, N. Furukawa, Y. Seki, Chem. Lett. 2000, 750-751; b) F. Kakiuchi,
K. Igi, M. Matsumoto, N. Chatani, S. Murai, Chem. Lett. 2001, 422-423;
c) F. Kakiuchi, K. Igi, M. Matsumoto, T. Hayamizu, N. Chatani, S. Murai,
Chem. Lett. 2002, 396-397; d) F. Kakiuchi, M. Matsumoto, K. Tsuchiya,
K. Igi, T. Hayamizu, N. Chatani, S. Murai, J. Organomet. Chem. 2003,
686, 134-144.
a) H. Ihara, M. Suginome, J. Am. Chem. Soc. 2009, 131, 7502-7503; b)
H. Ihara, M. Koyanagi, M. Suginome, Org. Lett. 2011, 13, 2662-2665; c)
4
This article is protected by copyright. All rights reserved.