procedure. On the other hand, organocatalytic transfer
hydrogenation with organic hydride donors5 has emerged
as a powerful method for the construction of diverse cyclic
and acyclic amines as well as heterocycles, serving as an
important supplement to the transition-metal catalyzed
asymmetric hydrogenation.
Catalytic asymmetric reactions involving N-acylimi-
nium ions represent a useful tactic for the construction of
chiral amines in organic synthesis. Compared to ketimines
and N-heterocycles, however, N-acyliminium ions have
been less explored in asymmetric hydrogenation reactions.
Recently, chiral phosphoric acid catalyzed enantioselective
intermolecular FriedelÀCrafts alkylations of indoles with
N-acyliminium ions formed in situ from hydroxylactams
have been reported by Rueping,6 Zhou,7 Lete,8 Masson,9
etc. In 2012, Zhou10 et al. reported an enantioselective
transfer hydrogenation reaction of 3-hydroxyisoindolin-1-
ones with a Hantzsch ester catalyzed by chiral phosphoric
acid. We envisaged that hydroxylactams 2, prepared easily
from tryptamine derivatives 1,11 could be suitable sub-
strates in the Brønsted acid catalyzed transfer hydrogena-
tion reaction. The corresponding N-acyliminium ions will
be formed when the hydroxylactams are treated with
Brønsted acid. Then the transfer hydrogenation of these
key intermediates in the presence of a chiral Brønsted
acid would afford optically active tetrahydro-β-carbo-
lines (Scheme 1). Herein, we report such an efficient
synthesis of enantioenriched tetrahydro-β-carbolines
via chiral phosphoric acid catalyzed asymmetric transfer
hydrogenation with the Hantzsch ester as the organic
hydride source.12
(4) For selected examples, see: (a) Morimoto, T.; Suzuki, N.;
Achiwa, K. Heterocycle 2004, 63, 2097. (b) Szawkazo, J.; Czarnocki,
S. J.; Zawadzka, A.; Wojtasiewicz, K.; Leniewski, A.; Maurin, J. K.;
Czarnocki, Z.; Drabowicz, J. Tetrahedron: Asymmetry 2007, 18, 406. (c)
ꢀ
Bondzic, B. P.; Eilbracht, P. Org. Lett. 2008, 10, 3433. (d) Li, C.; Xiao, J.
J. Am. Chem. Soc. 2008, 130, 13208. (e) Espinoza-Moraga, M.; Caceres,
A. G.; Santos, L. S. Tetrahedron Lett. 2009, 50, 7059. (f) Evanno, L.;
Ormala, J.; Pihko, P. M. Chem.;Eur. J. 2009, 15, 12963.
Scheme 1. Proposed Hydrogenation of Hydroxylactams 2
(5) For reviews: (a) Ouellet, S. G.; Walji, A. M.; MacMillan,
D. W. C. Acc. Chem. Res. 2007, 40, 1327. (b) You, S.-L. Chem.;Asian
J. 2007, 2, 820. (c) Connon, S. J. Org. Biomol. Chem. 2007, 5, 3407. (d)
Wang, C.; Wu, X.; Xiao, J. Chem.;Asian. J. 2008, 3, 1750. (e) Rueping,
M.; Sugiono, E.; Schoepke, F. R. Synlett 2010, 852. (f) Rueping, M.;
Dufour, J.; Schoepke, F. R. Green Chem. 2011, 13, 1084. (g) de Vries,
ꢁ ꢀ
J. G.; Misic, N. Catal. Sci. Technol. 2011, 1, 727. (h) Zheng, C.; You, S.-
L. Chem. Soc. Rev. 2012, 41, 2498.
(6) Rueping, M.; Nachtsheim, B. J. Synlett 2010, 119.
(7) (a) Yu, X.; Lu, A.; Wang, Y.; Wu, G.; Song, H.; Zhou, Z.; Tang,
C. Eur. J. Org. Chem. 2011, 892. (b) Yu, X.; Wang, Y.; Wu, G.; Song, H.;
Zhou, Z.; Tang, C. Eur. J. Org. Chem. 2011, 3060.
(8) Aranzamendi, E.; Sotomayor, N.; Lete, E. J. Org. Chem. 2012, 77,
2986.
(9) Courant, T.; Kumarn, S.; He, L.; Retailleau, P.; Masson, G. Adv.
Synth. Catal. 2013, 355, 836.
(10) Chen, M. -W.; Chen, Q.-A.; Duan, Y.; Ye, Z.-S.; Zhou, Y.-G.
We began our exploration by testing substrate 2a
with Hantzsch ester 4a as the hydride source. Several
(S)-BINOL-derived phosphoric acids were tested in CH2Cl2,
and the results are summarized in Table 1. In all cases, full
conversions were obtained; the enantiocontrol, however,
varied dramatically (entries 1À6, Table 1). The SiPh3
substituted phosphoric acid (S)-5baffordedthe best results
(88% yield, 52% ee, entry 2, Table 1). Further screening of
the catalysts showed VAPOL-derived phosphoric acid 6
and SPINOL-derived phosphoric acid 713 were not effi-
cient catalysts in terms of enantiocontrol (entries 7À8,
Table 1). With (S)-5b as the catalyst, we further optimized
the reaction conditions by examining the solvents, and it
was found that solvents affected the reactivity and enan-
tioselectivity significantly (entries 9À15, Table 1). Dioxane
turned out to be the best choice with improved enantios-
electivity (75% ee, entry 12, Table 1).
Further screening of hydride donors revealed that the
utilization of Hantzsch ester 4b could further improve the
enantioselectivity (80% ee, entry 1, Table 2). Attempts
using molecular sieves or MgSO4 did not benefit the reac-
tion outcome (entries 2À5, Table 2). Finally, the reaction
with 5 mol % (S)-5b and Hantzsch ester 4b as the hydride
source in dioxane at room temperature led to the best
combination of isolated yield and enantioselectivity (91%
yield, 80% ee, entry 1, Table 2).
Chem. Commun. 2012, 48, 1698.
(11) (a) Selvakumar, J.; Makriyannis, A.; Ramanathan, C. R. Org.
Biomol. Chem. 2010, 8, 4056. (b) Selvakumar, J.; Ramanathan, C. R.
Org. Biomol. Chem. 2011, 9, 7643.
(12) Selected examples for transfer hydrogenation of imine by chiral
phosphoric acid: (a) Rueping, M.; Sugiono, E.; Azap, C.; Theissmann,
T.; Bolte, M. Org. Lett. 2005, 7, 3781. (b) Hoffmann, S.; Seayad, A. M.;
List, B. Angew. Chem., Int. Ed. 2005, 44, 7424. (c) Storer, R. I.; Carrera,
D. E.; Ni, Y.; MacMillan, D. W. C. J. Am. Chem. Soc. 2006, 128, 84. (d)
Hoffmann, S.; Nicoletti, M.; List, B. J. Am. Chem. Soc. 2006, 128, 13074.
(e) Li, G.; Liang, Y.; Antilla, J. C. J. Am. Chem. Soc. 2007, 129, 5830. (f)
Kang, Q.; Zhao, Z.-A.; You, S.-L. Adv. Synth. Catal. 2007, 349, 1657. (g)
Han, Z.-Y.; Xiao, H.; Chen, X.-H.; Gong, L.-Z. J. Am. Chem. Soc. 2009,
131, 9182. (h) Han, Z.-Y.; Xiao, H.; Gong, L.-Z. Bioorg. Med. Chem.
Lett. 2009, 19, 3729. (i) Kang, Q.; Zhao, Z.-A.; You, S.-L. Org. Lett.
2008, 10, 2031. (j) Guo, Q.-S.; Du, D.-M.; Xu, J. Angew. Chem., Int. Ed.
2008, 47, 759. (k) Rueping, M.; Theissmann, T.; Raja, S.; Bats, J. W.
Adv. Synth. Catal. 2008, 350, 1001. (l) Nguyen, T. B.; Bousserouel, H.;
ꢀ
Wang, Q.; Gueritte, F. Org. Lett. 2010, 12, 4705. (m) Rueping, M.;
Brinkmann, C.; Antonchick, A. P.; Atodiresei, I. Org. Lett. 2010, 12,
4604. (n) Wakchaure, V. N.; Nicoletti, M.; Ratjen, L.; List, B. Synlett
2010, 2708. (o) Wakchaure, V. N.; Zhou, J.; Houffmann, S.; List, B.
Angew. Chem., Int. Ed. 2010, 49, 4612. (p) Nguyen, T. B.; Bousserouel,
ꢀ
H.; Wang, Q.; Gueritte, F. Adv. Synth. Catal. 2011, 353, 257. (q) Nguyen,
ꢀ
T. B.; Wang, Q.; Gueritte, F. Chem.;Eur. J. 2011, 17, 9576. (r) Chen,
Q.-A.; Wang, D.-S.; Zhou, Y.-G.; Duan, Y.; Fan, H.-J.; Yang, Y.;
Zhang, Z. J. Am. Chem. Soc. 2011, 133, 6126. (s) Chen, Q.-A.; Chen,
M.-W.; Yu, C.-B.; Shi, L.; Wang, D.-S.; Yang, Y.; Zhou, Y.-G. J. Am.
Chem. Soc. 2011, 133, 16432. For utilization of benzothiazoline as a
hydrogen donor, see: (t) Zhu, C.; Akiyama, T. Org. Lett. 2009, 11, 4180.
(u) Zhu, C.; Akiyama, T. Adv. Synth. Catal. 2010, 352, 1846. (v) Enders,
D.; Liebich, J. X.; Raaabe, G. Chem.;Eur. J. 2010, 16, 9763. (w)
Henseler, A.; Kato, M.; Mori, K.; Akiyama, T. Angew. Chem., Int.
Ed. 2011, 50, 8180. (x) Saito, K.; Akiyama, T. Chem. Commun. 2012, 48,
4573. (y) Sakamoto, T.; Mori, K.; Akiyama, T. Org. Lett. 2012, 14,
3312.
Under the above optimized reaction conditions, various
substituted hydroxylactams 2 were examined to probe the
generality of the reaction. The results are shown in Table 3.
(13) (a) Xu, F.; Huang, D.; Han, C.; Shen, W.; Lin, X.; Wang, Y.
ꢂ
ꢀ
€
J. Org. Chem. 2010, 75, 8677. (b) Coric, I.; Muller, S.; List, B. J. Am.
Chem. Soc. 2010, 132, 17370.
B
Org. Lett., Vol. XX, No. XX, XXXX