5
4. For reviews, see: (a) Humphrey, G. R.; Kuethe, J. T. Chem. Rev.
2006, 106, 2875;
Next, the utility of the developed method was demonstrated by
the synthesis of naturally occurring amino acid tryptamine [8].
Reaction of oxindole 14 with LiAlH4 provided tryptamine 15 in
62% isolated yield (Scheme 5).
(b) Zeni, G.; Larock, R. C. Chem. Rev. 2006, 106, 4644;
(c) Bandini, M.; Eichholzer, A. Angew. Chem. Int. Ed. 2009, 48,
9608;
(d) Cacchi, S.; Fabrizi, G. Chem. Rev. 2011, 111, 215;
(e) Ishikura, M.; Abe, T.; Choshi, T.; Hibino, S. Nat. Prod. Rep.
2013, 30, 694 and references therein.
5. Sundberg, R. J. Indole; Acedemic Press: New York, 1996, 1.
6. Radwanski, R. E.; Last, L. R. Plant Cell 1995, 7, 921.
7. Jones, R. S. Progress Neurobiol. 1982, 19, 117.
8. Della, G.; Djura, P.; Sargent, M. V. J. Chem. Soc. Perkin Trans.
1981, 1, 1679.
Scheme 5. Synthesis of tryptamine.
9. Fusetani, N.; Sugawara, T.; Matsunga, S. J. Org. Chem. 1991, 56,
4971.
10. Guerriero, A.; Ambrosio, M. D.; Pietra, F.; Debitus, C.; Ribes, O.
J. Nat. Prod. 1993, 56, 1962.
11. Bobzin, C. S.; Faulkner, D. J. J. Org. Chem. 1991, 56, 4403-4407.
12. Bewely, A. C.; Faulkner, D. J. Angew. Chem. Int. Ed. 1998, 37,
2162.
13. (a) B. Robinson, The Fischer Indole Synthesis; Wiley, 1982;
(b) Wagaw, S.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc.
1998, 120, 6621;
We presume that the addition of LiAlH4 to oxindoles
generates the intermediate A via hydride transfer to the amide
carbonyl of the oxindole (Scheme 6). Elimination of ŌAlH2 leads
to the formation of indolinium ion intermediate B [29, 35].
Subsequent aromatization provides the desired indole derivatives
(Scheme 6). As aromatization is the driving force, C3-hydrogen
elimination is faster than another hydride transfer from LiAlH4 to
the indolinium ion intermediate B.
(c) Alex, K.; Tillack, A.; Schwarz, N.; Beller, M. Angew. Chem.
Int. Ed. 2008, 47, 2304;
(d) Haag, B. A.; Zhang, Z. -G.; Li, J. -S.; Knöchel, P. Angew.
Chem. Int. Ed. 2010, 49, 9513.
14. (a) Yadav, J. S.; Reddy, B. V. S.; Reddy, P. M.; Srinivas,
C.Tetrahedron Lett., 2002, 43, 5185;
(b) Yadav, J. S.; Reddy B. V. S.; Swamy, T. Tetrahedron Lett.
2003, 44, 9121;
(c) Mukherjee, D.; Sarkar, S. K.; Chowdhury, U. S.; Taneja, S. C.
Tetrahedron Lett. 2007, 48, 663;
(d) Smith, M. B.; Guo, L. C.; Okeyo, S.; Stenzel, J.; Yanella, J.;
LaChpelle, E. Org. Lett. 2002, 4, 2321;
(e) Bartoli, G.; Bosco, M.; Carlone, A.; Pesciaioli, F.; Sambri, L.;
Melchiorre, P. Org. Lett. 2007, 9, 1403.
Scheme 6. Plausible mechanism for the formation of 3-indoles
via hydride transfer.
In summary, we have developed a general protocol for the
synthesis of 3-substituted indoles using an optimized amount of
LiAlH4. The synthetic pathway proceeds via hydride transfer to
the oxindole moiety involving indolinium ion intermediate
followed by aromatization. Various 3-functionalized alkyl and
aryl indoles were obtained in excellent yields. The 3,3ʹ-bis-
indoles were also obtained in high yields using this method. The
synthesis of a dimeric indole derivative further highlights the
efficiency of the developed protocol. The method described
herein is mild, simple and efficient, providing a convenient
synthetic access to a wide variety of 3-substituted indoles.
15. Ackermann, L.; Born, R. Tetrahedron Lett., 2004, 45, 9541.
16. Yaragorla, S.; Kumar, S. G. Indian Journal of Chemistry. 2015,
54B, 240.
17. Palmeiri, A.; Petrini, M.; Shaikh, R. R. Org. Biomol. Chem. 2010,
8, 1259.
18. Singh, V. K.; Dubey, R.; Upadhyay, A.; Sharma, L. K.; Singh, R.
K. P. Tetrahedron Lett. 2017, 58, 4227.
19. Cacchi, S.; Fabrizi, G. Chem. Rev. 2006, 105, 2873.
20. Akita, Y.; Itagaki, Y.; Takizawa, S.; Ohta, A. Chem. Pharm. Bull.
1989, 37, 1477.
21. David, E.; Lejeune, J.; Pellet-Rostaing, S.; Schulz, J.; Lemaire,
M.; Chauvin, J.; Deronzier, A.; Tetrahedron Lett. 2008, 49, 1860.
22. Bellina, F.; Benelli, F.; Rossi, R. J. Org. Chem. 2008, 73, 5529.
23. Phipps, R. J.; Grimster, N. P.; Gaunt, M. J. J. Am. Chem. Soc.
2008, 130, 8172.
24. (a) Kumar, S.; Rathore, V.; Verma, A.; Prasad, Ch. D.; Kumar, A.;
Yadav, A.; Jana, S.; Sattar, M.; Meenakshi; Kumar, S. Org. Lett.
2015, 17, 82;
Declaration of competing interests
The authors declare no competing financial interests or personal
relationships that could have appeared to influence the work
reported in this paper.
(b) Chen, J.; Wu, J. Angew. Chem. Int. Ed. 2017, 56, 3951.
26. Kubo. A.; Nakai, T. Synthesis 1980, 365.
27. Ogata, O.; Nara, H.; Matsumura, K.; Kayaki, Y. Org Lett. 2019,
9954.
28. Wierenga, W.; Griffin, J.; Warpehoski, M. A. Tetrahedron Lett.
1983, 24, 2437.
Acknowledgments
We thank CSIR-India for financial support. TM and GC thank
CSIR-India for research fellowships.
29. Mandal, T.; Chakraborti, G.; Karmakar, S.; Dash, J. Org. Lett.
2018, 20, 4759.
Supplementary Material
30. Huang, A.; Kodanko, J. J.; Overman, L. E. J. Am. Chem. Soc.
2004, 126, 14043.
31. (a) de. Mayo, P.; Rigby, W. Nature. 1950, 166, 1075;
(b) Morrison, A. L.; Long, R. F.; Konigstein, M. J. Chem. Soc.
1951, 952;
(c) Micovic, V.; Mihailovic, M. J. Org. Chem. 1953, 18, 1190
32. Kikue, N.; Takahasi, T.; Nishino, H. Heterocycles 2015, 90, 540.
33. (a) Berens, U.; Brown, J. M.; Long, J.; Selke, R. Tetrahedron
Asymmetry 1996, 7, 285;
(b) Li, Y.; Wang, W. –H.; Yang, S. –D.; Li, B. –J.; Feng, C.; Shi,
Z. –J. Chem. Commun. 2010, 46, 4553.
34. Zhang, F. –L.; Zhu, X.; Chiba, S. Org. Lett. 2015, 17, 3138.
35. (a) Dhara, K.; Mandal, T.; Das, J.; Dash, J. Angew. Chem. Int. Ed.
2015, 54, 15831;
1H NMR and 13C NMR data and spectra and HRMS data of the
products are available. Supplementary data to this article can be
References
1. For recent reviews, see: (a) Kawasaki, T.; Higuchi, K. Nat. Prod.
Rep. 2005, 22, 761;
(b) Kochanowska-Karamyan, A. J. Chem. Rev. 2010, 110, 4489;
(c) Inman, M.; Moody, C. J. Chem. Sci. 2013, 4, 29 and references
therein.
2. Robert, F. M.; Wink, M. Alkaloids: Biochemistry, Ecology, and
Medicinal Applications; Plenum: London, 1998.
3. von Nussbaum, F. Angew. Chem. Int. Ed. 2003, 42, 3068.
4. Pindur, U.; Lemster, T. Curr. Med. Chem. 2001, 8, 1681.
(b) Mandal, T.; Chakraborti, G.; Maiti, S.; Dash, J. Org. Lett.
2019, 21, 8044.