SYNTHESIS
December 1998
1791
Acylation of Sugars with Pivaloyl Imidazole; General Procedure:
Pivaloyl imidazole was added to a stirred solution of the sugar
(2.8 mmol) in anhyd DMF (10 mL). The mixture was kept at the tem-
perature and for the period indicated in Table 1. The solution was
diluted with Et2O (75 mL) and toluene (25 mL) and then washed with
5% HCl solution (50 mL), H2O (50 mL) and aq satd NaHCO3 solution
(50 mL). The aqueous layer was extracted with Et2O (100 mL) and
the combined organic layers were dried (MgSO4) and concentrated in
vacuo. The resulting crude product was purified by column chroma-
tography using eluents as indicated in Table 1.
tography (Et2O/hexane 5:1). Compound 25β was eluted first as a sol-
id; mp 110–111ºC ; [α]D +21 (c = 1, CHCl3).
Anal Calcd for C23H39NO9: C, 58.32; H, 8.31; N, 2.96. Found: C,
58.10; H, 8.42; N, 2.92.
Compound 25α was eluted next as a solid; mp 92–93ºC ; [α]D +71 (c
= 1, CHCl3).
Anal. calcd for C23H39NO9: C, 58.32; H, 8.31; N, 2.96. Found: C,
58.40; H, 8.40; N, 3.06.
We thank Dirección General de Investigación Científica y Tecnica for
financial support (PB92-1207).
(3',6'-Di-O-pivaloyl-β-D-galactopyranosyl)-(1→4)-1,2,6-tri-O-piv-
aloyl-β-D-glucopyranose (23): [α]D +17 (c = 0.2, CHCl3); mp 108-
109°C.
(1) Kociénski, P.J. Protecting Groups; Thieme: Stuttgart,1994.
(2) Greene, T.W.; Wuts, P.G.M. Protecting Groups in Organic
Synthesis; Wiley: New York, 1991
1H NMR (CDCl3, 300 MHz): δ = 1.17, 1.18, 1.19, 1.20, 1.26 [s, 45 H,
5 × C(CH3)3], 3.43 (dd, 1 H, J = 8.5, 9.8 Hz, H-4), 3.66 (m, 1 H, H-
5'), 3.79 (dd, 1 H, J = 8.5, 9.7 Hz, H-3), 3.85 (m, 1 H, H-5), 3.92 (dd,
1 H, J = 7.7, 10.1 Hz, H-2'), 3.99 (d, 1 H, J = 3.2 Hz, H-4'), 4.19 (dd,
1 H, J = 5.4, 12.1 Hz, H-6), 4.23 (dd, 1 H, J = 7.9, 11.9 Hz, H-6), 4.37
(d, 1 H, J = 7.7 Hz, H-1'), 4.36–4.42 (m, 1 H, H-6), 4.58 (m, 1 H, H-
6), 4.83 (dd, 1 H, J = 3.2, 10.1 Hz, H-3'), 5.02 (dd, 1 H, J = 8.5, 9.7
Hz, H-2), 5.62 (d, 1 H, J = 8.5 Hz, H-1).
(3) Haines A.H. Adv. Carbohydr. Chem. Biochem. 1976, 11.
(4) Haines A.H. Adv. Carbohydr. Chem. Biochem. 1981, 13.
(5) Gelas J. Adv. Carbohydr. Chem. Biochem. 1981, 71.
(6) Zehavi U. Adv. Cabohydr. Chem. Biochem. 1988, 179.
(7) Santoyo-González F.; García-Calvo-Flores F.; Isac-García J.;
Robles-Díaz R.; Vargas-Berenguel A. Synthesis 1994, 97.
(8) Hoenig H.; Weidman H. Carbohydr. Res. 1975, 39, 374.
(9) Sinay P.; Jacquinet J.C.; Petitou M.; Duchaussoy P.; Lederman
I.; Choay J.; Torri G. Carbohydr. Res. 1984, 132, C5.
(10) Varela O.; Cicero D.; Lederkremer R.M. J. Org. Chem. 1989,
54, 1884.
13C NMR (CDCl3, 75 MHz): δ = 26.9, 27.0, 27.1 [5 × C(CH3)3], 38.7,
38.8, 38.9, 39.0, 39.1 [5 × C(CH3)3], 62.8, 63.4 (C-6, 6'), 67.3 (C-4'),
69.1, 71.2, 73.3, 73.6, 74.5 (C-2,2',3, 3',5, 5'), 82.2 (C-4), 91.7 (C-1),
104.7 (C-1'), 176.8, 178.1, 178.8 (5 × CO).
HRMS(FAB): m/z calcd for C37H62O16Na 785.3935, found 785.3935.
(11) Gallo-Rodriguez C.; Varela O.; Lederkremer R.M. J. Org.
Chem. 1996, 61, 1886.
(12) Horton D.; Priebe W.; Varela O. Carbohydr. Res. 1985, 144,
317.
(13) Holy´ A.; Soucek M. Tetrahedron Lett. 1971, 185.
(14) Abbas S.A.; Haines A.H. Carbohydr. Res. 1975, 39, 358.
(15) Plusquellec D.; Baczko K. Tetrahedron Lett. 1987, 28, 3809.
(16) Leon-Ruaud P.; Allainmat M.; Plusquellec D. Tetrahedron Lett.
1991, 32, 1557.
(17) Baczko K.; Plusquellec D. Tetrahedron 1991, 47, 3817.
(18) Angyal S.J.; Evans M.E. Austral. J. Chem. 1972, 25, 1495.
(19) Griffin B.E.; Jarman M.; Reese C.B. Tetrahedron 1968, 24,
639.
(20) Kunesch N.; Miet C.; Poisson J. Tetrahedron Lett. 1987, 28,
3569.
(21) Santoyo-González F.; Isac-García J.; Vargas-Berenguel A.;
Robles-Díaz R.; Calvo-Flores F.G. Carbohydr. Res. 1994, 262,
271.
(22) Kunz H.; Harreus A. Liebigs Ann. Chem. 1982, 41.
(23) Schmidt R.R.; Zimmermann P. Angew. Chem. 1986, 98, 722;
Angew. Chem. Int. Ed. Engl. 1986, 25, 725.
(24) Sato S.; Nunomura S.; Nakano T.; Ito Y.; Ogawa T. Tetrahe-
dron Lett. 1988, 29, 4097.
(25) Lassaletta J.M.; Carlsson K.; Garegg P.J.; Schmidt R.R. J. Org.
Chem. 1996, 61, 6873.
(26) Petrovic V.; Tomic S.; Ljevakovic D.; Tomasic J. Carbohydr.
Res. 1997, 302, 13.
(27) Tomic-Kulenovik S.; Keglevic D. Carbohydr. Res. 1980, 85,
306.
(28) Ljevakovic D.; Parat D.; Tomasic J.; Tomic S. Croat. Chem.
Acta 1995, 68, 477.
(29) Sato K.; Yoshitomo A.; Takai Y. Bull. Chem. Soc. Jpn 1997, 70,
885.
(30) Ljevakovic D.; Tomic S.; Tomasic J. Carbohydr. Res. 1988,
182, 197.
(31) Becker D.; Galili N. Tetrahedron Lett. 1992, 33 , 4775.
(32) Ljevakovic D.; Tomic S.; Tomasic J. Carbohydr. Res. 1992,
230, 107.
(33) Chowdhary M.S.; Hough L.; Richardson A.C. J. Chem. Soc. ,
Perkin Trans. 1 1984, 419.
(2',4'-Di-O-acetyl-3',6'-di-O-pivaloyl-â-D-galactopyranosyl)-
(1→4)-3-O-acetyl-1,2,6-tri-O-pivaloyl-â-D-glucopyranose (24):
Conventional acetylation of 23 (100 mg) with Ac2O/pyridine gave 24
(95%) as an amorphous solid after usual workup; mp 92°C; [α]D +11
(c = 1, CHCl3).
1H NMR (CDCl3, 300 MHz): δ = 1.09, 1.12, 1.15, 1.21, 1.23 [s, 45 H,
5 × C(CH3)3], 2.02 (s, 6 H, 2 × COCH3), 2.13 (s, 3 H, COCH3), 3.75–
4.18 (m, 6 H, H-4,5,6,6,5',6'), 4.46 (d, 1 H, J = 8.1 Hz, H-1'), 4.50 (m,
1 H, H-6), 4.91 (dd, 1 H, J = 3.4, 10.3 Hz, H-3'), 5.02 (dd, 1 H, J =
8.4, 9.7 Hz, H-2), 5.17 (dd, 1 H, J = 8.1, 10.1 Hz, H-2'), 5.30 (dd, 1 H,
J = 8.7, 9.8 Hz, H-3), 5.40 (br d, 1 H, J = 3.0 Hz, H-4'), 5.64 (d, 1 H,
J = 8.4 Hz, H-1).
13C NMR (CDCl3, 75 MHz): δ = 20.6, 20.7 ( 3 × CH3CO), 26.8, 26.9,
27.0, 27.1, 27.2 [5 × C(CH3)3], 38.7, 38.8, 38.9 [5 × C(CH3)3], 61.2,
66.7 (C-6, 6'), 69.2, 70.0, 71.1, 72.2, 73.7, 76.0 (C-2,2',3, 3',4,4',5, 5'),
91.7 (C-1), 101.1 (C-1'), 168.9, 169.5, 169.8, 176.4, 176.7, 177.2,
177.7 (5 × CO).
HRMS(FAB): m/z calcd for C43H68O19Na 911.4252, found 911.4252.
2-Acetamido-2-deoxy-1,3,6-tri-O-pivaloyl-α,â-D-galactopyrano-
side (25):
Triflic anhydride (0.84 mL, 5 mmol) in anhyd CH2Cl2 (5 mL) was
added to a solution of pyridine (0.83 mL, 10 mmol) in anhyd CH2Cl2,
stirred under pure N2 at –15°C. After 15 min, a solution of 18 (1.5 g,
3.2 mmol) in anhyd CH2Cl2 was added, and stirring was continued for
45 min, the temperature being allowed to rise gradually to 0°C. After
this time, TLC (Et2O/hexane, 5:1) showed complete disappearance of
the starting material. CH2Cl2 (100 mL) was added and the solution
washed successively with 5% HCl solution (100 mL), aq satd
NaHCO3 solution (100 mL) and H2O (50 mL). The organic phase was
dried (Na2SO4) and evaporated. The resulting crude product was dis-
solved in anhyd DMF (6 mL) and then NaNO2 (2 g) was added. After
18 h the reaction mixture was diluted with Et2O (100 mL) and toluene
(50 mL) and then washed with NaHCO3 saturated solution (50 mL)
and water (50 mL). The organic layer was dried (Na2SO4) and con-
centrated in vacuo. The resulting crude product was purified by col-
umn chromatography (Et2O/hexane, 5:1) to give the title compound
(1.05 g, 70%) as an α,β-mixture of anomers (ratio 1:10). A small
amount (~100 mg) of this mixture was separated by column chroma-