using H2O/TBAB system (Table 2, 3k-p). Electron-donating
terminal alkynes all conducted smoothly Cross-coupling
reactions to afford the desired corresponding products in good
yields (Table 2, 3k-n). Unfortunately, electron-withdrawing
group decreased the transformation rate very much (Table 2,
3o-p).
A possible mechanism as outlined in Scheme 2 was proposed
on the basis of the reported mechanism and our experimental
results (Schem 2).6,8,10-11 Firstly, transmetalation with arylboronic
acid affords palladium intermediate A. Subsequently, palladium
intermediate A can react with alkynylsilver B to form palladium
intermediate C. Next, the reductive elimination of the
intermediate C obtains the product 3 and the Pd(0). Finally, the
Pd(0) is oxidized in the presence of the Ag2O to complete the
catalytic cycle.
Table 3. Reusability study of Pd(OAc)2/H2O/TBAB system in
the cross-coupling of terminal alkynes with arylboronic acids
Pd(OAc)2
5 mmol%
Conclusions
ArB(OH)2
+
R
Ar
R
In summary, we have developed a novel Pd(OAc)2-catalyzed
method for the cross-coupling of terminal alkynes with
arylboronic acids using environmentally friendly H2O/TBAB as
reaction medium. This effective protocol has proved to be
practical, economical and environmentally with several
advantages including: (1) carrier-free and recyclable system; (2)
ligand-free and environmentally friendly reaction solvent; (3)
good cross-copling selectivity. Further studies are now ongoing
to investigate the possibility of recycling and reactivation of
Pd/water/ionic liquid systems in industrial production.
3 recycles
terminal alkyne
arylboronic acid
No
Yielda (3)
80% (3a)
76% (3a)
73% (3a)
81% (3l)
78% (3l)
76% (3l)
1b
2c
B(OH)2
MeO
1a
1l
2a
3 c
1 b
2 c
N
B(OH)2
2i
Acknowledgments
3 c
We thank the National Natural Science Foundation of China
(No. 21563015) and the Science and Technology Project of
Jiangxi Provincial Department of Education (No. GJJ170656) for
financial support.
a
b
Isolated yield. Reaction conditions: 1 (0.2 mmol), 2 (0.3 mmol), Pd(OAc)2
(5 mol%), NaOH (2.5 equiv), Ag2O (2.5 equiv), H2O (0.5 g):TBAB (0.5 g)=1:1,
air, and 0.5 h at 20 oC and then 1 h at 80 oC. Reaction conditions: 1 (0.2
c
mmol), 2 (0.3 mmol), NaOH (1.5 equiv), Ag2O (1.5 equiv), air, and 0.5 h at 20
oC and then 1 h at 80 oC.
References and notes
1. (a) Sonogashira, K. J. Organomet. Chem. 2002, 653, 46; (b)
Doucet, H.; Hierso, J.-C. Angew. Chem. Int. Ed. 2007, 46, 834; (c)
Yin, L.; Liebscher, J. Chem. Rev. 2007, 107, 133; (d) Tykwinski, R. R.
Angew. Chem. Int. Ed. 2003, 42,1566.
2. (a) Toyota, M.; C. Komori, C.; Ihara, M. J. Org. Chem. 2000, 65,
7110; (b) Cosford, N. D. P.; Tehrani, L.; Roppe, J.; Schweiger, E.;
Smith, N. D.; Anderson, J.; Bristow, L.; Brodkin, J.; Jiang, X.;
McDonald, I.; Rao, S.; Washburn, M.; Varney, M. A. J. Med. Chem.
2003, 46, 204; (c) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew.
Chem. Int. Ed. 2005, 44, 4442; (d) Bunz, U. H. F. Chem. Rev. 2000,
100, 1605; (e) Siemsen, P.; Livingston, R. C.; Diederich, F. Angew.
Chem. Int. Ed. 2000, 39, 2632; (f) Ibrahim, M. B.; Ali, B. E.; Malik, I.;
Fettouhi, M. Tetrahedron Lett. 2016, 57, 554.
3. (a) Negishi, E.; Anastasia, L. Chem. Rev. 2003, 103, 1979; (b)
Chinchilla, R.; Najera, C.; Chem. Rev. 2007, 107, 874; (c) Tang, B.-
X.; Wang, F.; Li, J.-H.; Xie, Y.-X.; Zhang, M.-B. J. Org. Chem. 2007,
72, 6294; (d) Zhang, W.; Wu, H.; Liu, Z.; Zhong, P.; Zhang, L.;
Huang, X.; Cheng, J. Chem. Commun. 2006, 4826; (e) Gelman, D.;
Buchwald, S. L. Angew. Chem. Int. Ed. 2003, 42, 5993; (f) Ma, D.;
Liu, F. Chem. Commun. 2004, 1934; (g) Monnier, F.; Turtaut, F.;
Duroure, L.; Taillefer, M. Org. Lett. 2008, 10, 3203; (h) M. Carril,
M.; Correa, A.; Bolm, C. Angew. Chem. Int. Ed. 2008, 47, 4862; (i)
Das, S. K.; Sarmah, M; Bora, U. Tetrahedron Lett. 2017, 58, 2094.
4. (a) Chinchilla, R.; Nájera, C. Chem. Soc. Rev. 2011, 40, 5084; (b)
Consorti, C. S.; Flores, F. R.; Rominger, F.; Dupont, J. Adv. Synth.
Catal. 2006, 348, 133.
As well know, the general method for the reusability of Pd-
catalyst is to immobilize palladium on an inert support
material.18 Although these immobilized Pd-catalysts are efficient
in catalyzing organic reactions, the palladium catalysts were
prepared in multiple steps, using complex and expensive
supported-materials, which still limit their applications. Here,
new and unsupported method for the reusability of Pd-catalyst
was studied in the cross-coupling reaction of terminal alkynes
with arylboronic acids (Table 3). As shown in Table 3, 1-ethynyl-
4-methoxybenzene 1a reacted with phenylboronic acid 2a
efficiently to give similar results in three runs using the
recovered Pd(OAc)2/H2O/TBAB system (Table 3, 3a). Gratifyingly,
the cross-coupling of 1-ethynylnaphthalene 1l with pyridin-4-
ylboronic acid 2i was conducted successfully in good yield using
recyclable Pd(OAc)2/H2O/TBAB system (Table 3, 3l).
+
+
Ag2O OAc- + B(OH)2
R
ArB(OH)2
base
Pd(OAc)2
Pd(0)
ArPdOAc
R
Ag
A
B
5. Zou, G.; Zhu, J.; Tang, J. Tetrahedron Lett. 2003, 44, 8709.
6. Nie, X.; Liu, S.; Zong, Y.; Sun, P.; Bao, J. J. Organomet. Chem. 2011,
696, 1570.
7. Pan, C.; Luo, F.; Wang, W.; Ye, Z.; Cheng, J. Tetrahedron Lett. 2009,
50, 5044.
Ag+ + OAc-
Ar Pd
OAc- + Ag2O
R
C
8. Mitsudo, K.; Shiraga, T.; Mizukawa, J.; Suga, S.; Tanaka, H. Chem.
Ar
R
Commun. 2010, 46, 9256.
9. Truong, T.; Nguyen, C. K.; Tran, T. V.; Nguyen, T. T.; Phan, N. T. S.
Catal. Sci. Technol. 2014, 4, 1276.
3
Scheme 2. Possible mechanism.
10. Yang, F.; Wu, Y.; Eur. J. Org. Chem. 2007, 3476.
11. Zhou, M.-B.; Wei, W.-T.; Xie, Y.-X.; Lei, Y.; Li, J.-H. J. Org. Chem.
2010, 75, 5635.