10.1002/chem.201803142
Chemistry - A European Journal
COMMUNICATION
[10] a) For comprehensive information regarding triflimide catalyzed
reactions, see: J. Sun, “Triflimide”, In e-EROS Encyclopedia of
reagents for organic synthesis, John Wiley & Sons, Ltd, 2010 and
references therein. b) For a short review, see: V. L. Rendina, Synlett
2011, 3055–3056 and references therein; Selected recent studies, see:
c) O. Gutierrez, B. F. Strick, R. J. Thomson, D. J. Tantillo, Chem. Sci.
2013, 4, 3997–4003. d) J. C. T. Reddel, W. Wang, K. Koukounas, R. J.
Thomson, Chem. Sci. 2017, 8, 2156–2160.
Acknowledgements
Generous support from the Max Planck Society, the Deutsche
Forschungsgemeinschaft (Leibniz Award to B.L. and Cluster of
Excellence RESOLV, EXC 1069), and the European Research
Council (Advanced Grant “C–H Acids for Organic Synthesis,
CHAOS”) are gratefully acknowledged. We thank Jennifer L.
Kennemur for her suggestions during the preparation of this
manuscript, the technicians of our group, and the members of
our NMR, MS and GC departments for their excellent service.
[11] a) K. Ishihara, Y. Hiraiwa, H. Yamamoto, Synlett 2001, 1851–1854. b)
K. Ishihara, Y. Hiraiwa, H. Yamamoto, Chem. Comm. 2002, 15, 1564–
1565. c) Y. Hiraiwa, K. Ishihara, H. Yamamoto, Eur. J. Org. Chem.
2006, 1837–1844.
[12] For an account, see: a) W. Gati, H. Yamamoto, Acc. Chem. Res. 2016,
49, 1757–1768. For examples, see: b) M. Boxer, H. Yamamoto, J. Am.
Chem. Soc., 2006, 128, 48–49. c) M. Boxer, H. Yamamoto, J. Am.
Chem. Soc., 2007, 129, 2762–2763. d) M. Boxer, H. Yamamoto, J. Am.
Chem. Soc., 2008, 130, 1580–1582. e) B. J. Albert, H. Yamamoto,
Angew. Chem. Int. Ed. 2010, 49, 2747–2749. f) B. J. Albert, Y.
Yamaoka, H. Yamamoto, Angew. Chem. Int. Ed. 2011, 50, 2610–2612.
g) J. Saadi, M. Akakura, H. Yamamoto, J. Am. Chem. Soc., 2011, 133,
14248–15251. h) P. B. Brady, H. Yamamoto, Angew. Chem. Int. Ed.
2012, 51, 1942–1946. i) P. B. Brady, B. J. Albert, M. Akakura, H.
Yamamoto, Chem. Sci. 2013, 4, 3223–3231. j) A. Izumiseki, H.
Yamamoto, J. Am. Chem. Soc., 2014, 136, 1308–1311. k) P. B. Brady,
S. Oda, H. Yamamoto, H., Org. Lett., 2014, 16, 3864–3867. l) W. Gati,
H. Yamamoto, Chem. Sci. 2016, 7, 394–399.
Conflict of interest
The authors declare no conflict of interest.
Keywords: Mukaiyama aldol reaction • aldol reaction of ketone •
Lewis acid catalysis • parts-per-million catalyst loading • tertiary
aldols • silyl ketene acetal
[1]
For comprehensive books, see: a) R. Mahrwald Ed., In Modern aldol
reactions, Wiley-VCH Verlag GmbH & Co. 2004. b) R. Mahrwald Ed., In
Modern methods in stereoselective aldol reactions, Wiley-VCH Verlag
GmbH & Co. 2013. For reviews, see: c) S. G. Nelson, Tetrahedron:
Asymmetry 1998, 9, 357–389. d) R. Mahrwald, R., Chem. Rev. 1999,
99, 1095–1120.
[13] Examples on the triflimide catalyzed Mukaiyama-type ketone cross-
aldol reactions are known, see: Ref. 11a.
[14] a) B. Mathieu, L. Ghosez, Tetrahedron 2002, 58, 8219–8226. b) A.
Hasegawa, K. Ishihara, H. Yamamoto, Angew. Chem. Int. Ed. 2003, 42,
5731–5733.
[2]
[3]
a) M. L. Elliott, F. J. Urban, J. Bordner, J. Org. Chem. 1985, 50, 1752–
1755. b) R. Matovic, A. Ivkovic, M. Manojlovic, Z. Tokic-Vujosevic, R. N.
Saicic, J. Org. Chem. 2006, 71, 9411–9419.
[15] a) For a general procedure of the preparation of SKA A. To a solution
of n-butyllithium (2.5M in hexanes; 18.0 mL, 45.0 mmol, 1.10 equiv) in
60 mL of anhydrous THF, was dropwised freshly distilled
diisopropylamine (5.0 mL, 36 mmol, 1.2 equiv.) at 0 °C and stirred for
20 min. The reaction mixture was cooled to –78 °C, 1,3-dimethyl-
3,4,5,6,-tetrahydro-2-(1H)-pyrimidinone (DMPU; 7.9 mL, 65.5 mmol, 1.6
equiv.) was added, and stirred for 30 min. tert-Butyldimethylsilyl choride
(7.4 g, 49 mmol, 1.2 equiv.; dissolved in 10 mL anhydrous THF) was
slowly added at –78 °C and stirred for 12 h at room temperature. The
volatile components were removed in vacuo, and the resulting residue
was dissolved in pentane (100 mL), washed with water (1 × 100 mL),
saturated aqueous copper sulfate (CuSO4; 3 × 100 mL), saturated
aqueous sodium bicarbonate solution (1 × 100 mL), and brine (1 × 100
mL). The organic layer was then dried over anhydrous sodium sulfate,
filtered, concentrated in vacuo, and distillated in the presence of CaH2
to give the SKA A in 4.5 g (58% yield). 1H NMR (500 MHz, CDCl3) δ
7.53 (m, 2H), 7.52 (m, 1H), 7.41–7.36 (m, 3H), 6.70 (d, J = 16.3 Hz, 1H),
2.37 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 198.40, 143.46, 134.47,
130.56, 129.02, 128.30, 127.20, 27.57. b) A. G. Wenzel, E. N.
Jacobsen, J. Am. Chem. Soc. 2002, 124, 12964–12965. c) For a
discussion regarding the effect of the quality of SKA on the reaction
outcome, see: T. Gatzenmeier, P. S. J. Kaib, J. B. Lingnau, R. Goddard,
B. List, Angew. Chem. Int. Ed. 2018, 57, 2464–2468.
a) T. Mukaiyama, K. Narasaka, K. Banno, Chem. Lett. 1973, 2, 1011–
1014. b) K. Saigo, M. Osaki, T. Mukaiyama, Chem. Lett. 1975, 4, 989–
990. c) J.-x. Chen, K. Sakamoto, A. Orita, J. Otera, J. Org. Chem. 1998,
63, 9739–9745.
[4]
For the catalytic asymmetric Mukaiyama aldol reaction with ketone,
see: a) S. E. Denmark, Y. Fan, J. Am. Chem. Soc. 2002, 124, 4233–
4235. b) S. E. Denmark, Y. Fan, M. D. Eastgate, J. Org. Chem. 2005,
70, 5235–5248. c) K. Oisaki, D. Zhao, M. Kanai, M. Shibasaki, J. Am.
Chem. Soc. 2006, 128, 7164–7165. For reviews, see: d) M. Hatano, K.
Ishihara, Synthesis 2008, 1647–1675. e) S. Adachi, T. Harada, Eur. J.
Org. Chem. 2009, 3661–3671.
[5]
[6]
H. Y. Bae, D. Höfler, P. S. J. Kaib, P. Kasaplar, C. K. De, A. Döhring, S.
Lee, K. Kaupmees, I. Leito, B. List, Nat. Chem., 2018, DOI
=
10.1038/s41557-018-0065-0.
K. Oisaki, Y. Suto, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. 2003,
125, 5644–5645.
[7]
[8]
M. Hatano, E. Takagi, K. Ishihara, Org. Lett. 2007, 9, 4527–4530.
a) H. Yanai, Y. Yoshino, A. Takahashi, T. Taguchi, J. Org. Chem. 2010,
75, 5375–5378. b) D. Höfler, M. van Gemmeren, P. Wedemann, K.
Kaupmees, I. Leito, M. Leutzsch, J. B. Lingnau, B. List, Angew. Chem.
Int. Ed. 2017, 56, 1411–1415. c) L. Ratjen, M. v. Gemmeren, F.
Pesciaioli, B. List, Angew. Chem. Int. Ed. 2014, 53, 8765–8769. d) K. V.
Bukhryakov, V. G. Desyatkin, V. O. Rodionov., Chem. Commun. 2016,
52, 7576–7579.
[16] An α,β-unsaturated ketone such as benzylideneacetone-type
benzylideneacetone gave a mixture of 1,2-adduct 15 (43%) and 1,4-
adducts (57%). 3-Methyl-4-phenylbut-3-en-2-one gave exclusively 1,2-
adduct 16 (98%). See Ref. 5.
[9]
a) The reported pKa values of HOTf and HNTf2 in MeCN are 0.7 and 0.3,
respectively. See: A. Kütt, T. Rodima, J. Saame, E. Raamat, V.
Mäemets, I. Kaljurand, I. A. Koppel, R. Y. Garlyauskayte, Y. L.
Yagupolskii, L. M. Yagupolskii, E. Bernhardt, H. Willner, I. Leito, J. Org.
Chem. 2011, 76, 391–395. b) However, relative acidities between HOTf
and HNTf2 are the subject of debate, because those values are highly
dependent on the solvation and concentration. See: C. Thomazeau, H.
Olivier-Bourbigou, L. Magna, S. Luts, B. Gilbert, J. Am. Chem. Soc.
2003, 125, 5264–5265.
[17] X. Moreau, B. Bazán-Tejeda, J.-M. Campagne, J. Am. Chem. Soc.
2005, 127, 7288–7289.
[18] a) Y. Hasegawa, M. Yabuki, M. Matsukane, Chem. Biodivers. 2004, 1,
2042–2050. b) M. Troccaz, G. Borchard, C. Vuilleumier, S. Raviot-
Derrien, Y. Niclass, S. Beccucci, C. Starkenmann, Chem. Senses 2009,
34, 203–210.
This article is protected by copyright. All rights reserved.