316
G.J. Kharadi / Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 110 (2013) 311–316
[5] J. Liu, W. Tao, H. Dai, Z. Jin, J. Fang, Hetroatom Chem. 18 (2007) 376–383.
Table 5
[6] M.A.M. Taha, S.M. El-Badry, Phosphorus Sulfur 182 (2007) 1011–1021.
[7] L.Z. Xu, F.L. Xu, K. Li, Q. Lin, K. Zhou, Chin. J. Chem. 23 (2005) 1421–1424.
[8] W.Z. Shen, F. Kang, Y.J. Sun, P. Cheng, S.P. Yan, D.Z. Liao, Z.H. Jiang, Inorg. Chem.
Commun. 6 (2003) 408–414.
Antioxidant results of compounds.
Compounds
Antioxidant Activity
FRAP value (mmol/100 g)
[9] D.A. Gianolio, M. Lanfranchi, F. Lusardi, L. Marchi, M.A. Pellinghelli, Inorg.
Chim. Acta 309 (2000) 91–102.
[10] B.S. Holla, K.A. Poojary, B. Kalluraya, Farmaco 51 (1996) 793–799.
[11] S.N. Pandeya, D. Sriram, G. Nath, E. De Clrcq, Arzneim. Forsch. Drug Res. 50
(2000) 55–59.
[FeL1(H2O)(OH)]ꢁ2H2O (1)
[FeL2(H2O)(OH)]ꢁH2O (2)
[FeL3(H2O)(OH)]ꢁH2O (3)
[FeL4(H2O)(OH)]ꢁ2H2O (4)
87.42
82.76
76.65
74.83
[12] F.P. Invidiata, S. Grimaudo, P. Giammanco, L. Giammanco, Farmaco 46 (1991)
1489–1495.
[13] O.G. Todoulou, A. Papadaki-Valiraki, E.C. Filippatos, S. lkeda, E. De Clercq, Eur. J.
Med. Chem. 29 (1994) 127–131.
Cyclic voltametric studies
[14] F.P. Invidiata, D. Simoni, F. Scintu, N. Pinna, Farmaco 51 (1996) 659–664.
[15] G.G. Mohanmed, C.M. Sharaby, Spectrochim. Acta A 66 (2007) 949–958.
[16] K. Singh, M.S. Barwa, P. Tyagi, Eur. J. Med. Chem. 42 (2007) 394–402.
[17] N.L.D. Filho, R.M. Costa, F. Marangoni, D.S. Pereira, J. Colloid Interface Sci. 316
(2007) 250–259.
[18] P.S. Ray, G. Maulik, G.A. Cordis, A.A.E. Bertelli, A. Bertelli, D.K. Das, Free Radical
Biol. Med. 27 (1999) 160–169.
[19] X.F. Luo, X. Hu, X.Y. Zhao, S.H. Goh, X.D. Li, Polymer 44 (2003) 5285–5291.
[20] L. Streyer, Biochemistry, Freeman, New York, 1995.
[21] V. Razakantoanina, N.K.P. Phung, G. Jaureguiberry, Parasitol. Res. 86 (2000)
665–668.
The electrochemistry of Fe(III) complex is devoid of any redox
potential over the entire range of the experiment. Attempts to car-
ry out cyclic voltammetric studies at various scan rates, i.e. 5, 10,
50 and 100 mV sꢂ1 gave no redox activity. The observed inactivity
points to high stability of complexes, due to presence of (1) phenyl
groups (and perhaps CH3) in parent heterocyclic b-diketone which
is good electro donors, (2) the Schiff-base is N-rich and N is a better
r
donor and (3) the chelate ring of the complexes which may sta-
[22] Q.X. Li, H.A. Tang, Y.Z. Li, M. Wang, C.G. Xia, J. Inorg. Biochem. 78 (2000) 167–
174.
[23] P.J.E. Quintana, A. De Peyder, S. Klatzke, H.J. Park, Toxicol. Lett. 117 (2000) 85–
94.
bilize the chelate.
Antioxidant
[24] R. Baumgrass, M. Weivad, F. Erdmann, J. Biol. Chem. 276 (2001) 47914–47921.
[25] C. Wolf, X.F. Mei, H.K. Rokadia, Tetrahedron Lett. 45 (2004) 7867–7871.
[26] G. Weiss, V.R. Gordeuk, Eur. J. Clin. Invest. 35 (2005) 36–45.
[27] M. Franchini, Am. J. Hematol. 81 (2006) 202–209.
[28] W.Y. Ong, A.A. Farooqui, J. Alzheimers Dis. 8 (2005) 183–200.
[29] P.G. Avaji, B.N. Reddy, S.A. Patil, Trans. Met. Chem. 31 (2006) 842–848.
[30] A. Weiss, H. Witte, MagnetoChemie, Verlag Chemie, Weinheim, 1973.
[31] A.K. Singh, O.P. Pandey, S.K. Sengupta, Spectrochim. Acta Part A 85 (2012) 1–6.
[32] D. Sinha, A.K. Tiwari, S. Singh, G. Shukla, P. Mishra, H. Chandra, A.K. Mishra,
Eur. J. Med. Chem. 43 (2008) 160–165.
A capacity to transfer a single electron i.e. the antioxidant
power of all compounds was determined by a FRAP assay. The
FRAP value was expressed as an equivalent of standard antioxidant
ascorbic acid (mmol/100 g of dried compound). FRAP values indi-
cate that all the compounds have a ferric reducing antioxidant
power. The compounds 1 and 2 showed relatively high antioxidant
activity while compound 3 and 4 shows poor antioxidant power
(Table 5).
[33] M.N. Patel, P.A. Dosi, B.S. Bhatt, App. Organo. Chem. doi: 10.1002/aoc.1817.
[34] K.S. Patel, J.C. Patel, H.R. Dholariya, K.D. Patel, Spectrochim. Acta Part A 96
(2012) 468–479.
[35] P. Banerjee, O.P. Pandey, S.K. Sengupta, Trans. Met. Chem. 33 (2008) 1047–
1058.
Conclusions
[36] K. Singh, M.S. Barwa, P. Tyagi, Eur. J. Med. Chem. 41 (2006) 147–153.
[37] S. Gaur, B. Sharma, J. Ind. Chem. Soc. 8 (2003) 841–842.
[38] T.T. Daniel, K. Natarajan, Trans. Met. Chem. 25 (2000) 311–314.
[39] K. Serbest, A. Ozen, Y. Onver, E. Mustafa, I. Degirmencioglu, K. Sancak, J. Mol.
Struct. 922 (2009) 39–45.
The results of antioxidant and antimicrobial studies revealed
that the metal complexes are more effective than that of the
respective free ligands under identical experimental conditions.
[40] D.H. Jani, H.S. Patel, H. Keharia, C.K. Modi, Appl. Orgno. Chem. 24 (2010) 99–
111.
[41] G. Singh, P.A. Singh, K. Singh, D.P. Singh, R.N. Handa, S.N. Dubey, Proc. Natl.
Acad. Sci. India 72 (2002) 87–95.
Acknowledgements
[42] P.R. Shukla, V.K. Singh, A.M. Jaiswal, J. Narain, J. Ind. Chem. Soc. 60 (1983) 321–
341.
[43] R.N. Jadeja, J.R. Shah, E. Suresh, P. Paul, Polyhedron 23 (2004) 2465–2474.
[44] H.O. Kalinowski, S. Berger, S. Braun, 13C NMR-Spectroscopie, Georg Thieme
Verlag, Stuttgart, New York, 1984.
[45] L.N. Kurkovskaya, N.N. Shapet’ko, A.S. Vitvitskaya, A.Y. Kvitko, J. Org. Chem. 13
(1977) 1618–1619.
[46] A.B. Uzoukwu, S.S. Al-Juaid, P.B. Hitchcock, J.D. Smith, Polyhedron 12 (1993)
2719–2724.
The authors are thankful to Professor, Dr. K. D. Patel, Chemistry
Department, V.P. & R.P.T.P. Science College, Sardar Patel University,
Vallabh Vidyanagar, India for providing laboratory facilities. The
author also thanks to Pramukh Swami Maharaj, President of BAPS
(Bochasanwasi Shri Akshar Purushottam Swaminarayan Sanstha)
for direct or indirect support in my research works.
[47] A.R. Katritzky, M. Karelson, P.A. Harris, Heterocycles 32 (1991) 329–332.
[48] W. Holzer, K. Mereiter, B. Plagens, Heterocycles 50 (1999) 799–818.
[49] E.C. Okafor, Spectrochim. Acta A 40 (1984) 397–401.
[50] R.N. Jadeja, J.R. Shah, Polyhedron 26 (2007) 1677–1685.
[51] B.T. Thaker, K.R. Surati, S. Oswal, R.N. Jadeja, V.K. Gupta, Struct. Chem. 18
(2007) 295–310.
[52] G.J. Kharadi, Inter, J. Polym. Mater. 60 (2011) 1–13.
[53] G.J. Kharadi, J. Therm. Anal. Calorim. 107 (2011) 651–659.
[54] G.J. Kharadi, Synth. React. Inorg. Met. – Org. Chem. 43 (2012) 424–431.
[55] G.J. Kharadi, K.D. Patel, Appl. Organomet. Chem. 24 (2010) 523–529.
[56] G.J. Kharadi, K.D. Patel, Appl. Organomet. Chem. 24 (2010) 332–337.
[57] D. Danuta, B.J. Lucjan, D. Marek, Polyhedron 24 (2005) 407–412.
[58] F.A. Cotton, G. Wilkinson, The elements of first transition series, in: Avanced
Inorganic Chemistry, third ed., Wiley, 1992.
Appendix A. Supplementary material
Supplementary data associated with this article can be found, in
References
[1] O. Bekirkan, H. Bectas, Molecule 11 (2006) 469–477.
[2] B.S. Holla, B. Veerendra, M.K. Shivanda, B. Poojari, Eur. J. Med. Chem. 38 (2003)
759–767.
[3] T.S. Lobana, Proc. Indian Acad. Sci. 112 (2000) 323–329.
[4] Z.A. Kapalcikli, G.T. Zitoungi, A. Ozdemir, G. Revial, Eur. J. Med. Chem. 43 (2008)
155–159.
[59] A.B.P. Lever, Electronic spectra of dn ions, in: Inorganic Electronic
Spectroscopy, second ed. Elsevier, Amsterdam, 1984.