Journal of the American Chemical Society
Communication
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work is supported in part by grants from the National
Institutes of Health (GM040541) and the Welch Foundation (F-
1511). Dedicated to Prof. Koji Nakanishi on the occasion of his
88th birthday. We thank Steve Sorey for help in acquiring the
NMR spectra.
REFERENCES
■
(1) (a) Seto, H.; Kuzuyama, T. Nat. Prod. Rep. 1999, 16, 589.
(b) White, A. K.; Metcalf, W. W. Annu. Rev. Microbiol. 2007, 61, 379.
(2) Metcalf, W. W.; van der Donk, W. A. Annu. Rev. Biochem. 2009, 78,
65.
Figure 2. Selected 1H NMR assays of HppE with substrate analogues (a)
43 and (b) (R)-44, (c) preincubation with (R)-44 followed by addition
of 15, and (d) preincubation with 17 followed by addition of 15. The
bottom trace in panels (a) and (b) is the spectrum taken 3 min after
mixing HppE with the substrate analogue, and the top trace is recorded
27 min after initiation of the reaction. The NMR signals and the
corresponding protons in the structures shown in Scheme 5 are color-
coded.
(3) Kamat, S. S.; Williams, H. J.; Raushel, F. M. Nature 2011, 480, 570.
(4) Quinn, J. P.; Kulakova, A. N.; Cooley, N. A.; McGrath, J. W.
Environ. Microbiol. 2007, 9, 2392.
(5) Kim, J.; Dunaway-Mariano, D. Biochemistry 1996, 35, 4628.
(6) McSorley, F. R.; Wyatt, P. B.; Martinez, A.; Delong, E. F.; Hove-
Jensen, B.; Zechel, D. L. J. Am. Chem. Soc. 2012, 134, 8364.
(7) Xing, G.; Barr, E. W.; Diao, Y.; Hoffart, L. M.; Prabhu, K. S.; Arner,
R. J.; Reddy, C. C.; Krebs, C.; Bollinger, J. M., Jr. Biochemistry 2006, 45,
5402.
2b). Further experiments showed that preincubation of HppE
with (R)-44 led to enzyme inactivation, as the resulting enzyme
failed to convert 15 to 16 (Figure 2c). In control reactions where
HppE was preincubated with 17, the enzyme remained active
and capable of catalyzing fosfomycin production from 15 (Figure
2d). These data suggest that HppE is able to abstract a H atom
from C2 of (R)-44 to initiate the reaction, but only a fraction of
the radicals generated are oxidized to the corresponding cation
and converted to the migration product 47; the remaining
radicals react with the enzyme, rendering it inactive. This
interpretation is consistent with the results of DFT calculations
on 43 and 44, which show that the C2−H BDE and IE of the 3°
analogue 43 are 3.3 and 7.3 kcal/mol lower, respectively, than for
17, while those for the 1° analogue 44 are 3.7 and 10.5 kcal/mol
greater than for 17.
(8) Xing, G.; Diao, Y.; Hoffart, L. M.; Barr, E. W.; Prabhu, K. S.; Arner,
R. J.; Reddy, C. C.; Krebs, C.; Bollinger, J. M., Jr. Proc. Natl. Acad. Sci.
U.S.A. 2006, 103, 6130.
(9) (a) Liu, P.; Murakami, K.; Seki, T.; He, X.; Yeung, S. M.; Kuzuyama,
T.; Seto, H.; Liu, H.-w. J. Am. Chem. Soc. 2001, 123, 4619. (b) Zhao, Z.;
Liu, P.; Murakami, K.; Kuzuyama, T.; Seto, H.; Liu, H.-w. Angew. Chem.,
Int. Ed. 2002, 41, 4529. (c) Liu, P.; Liu, A.; Yan, F.; Wolfe, M. D.;
Lipscomb, J. D.; Liu, H.-w. Biochemistry 2003, 42, 11577. (d) Higgins, L.
J.; Yan, F.; Liu, P.; Liu, H.-w.; Drennan, C. L. Nature 2005, 437, 838.
(10) Chang, W.-c.; Dey, M.; Liu, P.; Mansoorabadi, S. O.; Moon, S.-J.;
Zhao, K. Z.; Drennan, C. L.; Liu, H.-w. Nature 2013, 496, 114.
(11) Blanksby, S. J.; Ellison, G. B. Acc. Chem. Res. 2003, 36, 255.
(12) Kim, C. K.; Lee, K. A.; Bae, S. Y.; Han, I. S.; Kim, C. K. Bull. Kor.
Chem. Soc. 2004, 25, 311.
(13) (a) Poulter, C. D.; Rilling, H. C. Biochemistry 1976, 15, 1079.
(b) Poulter, C. D.; Satterwhite, D. M. Biochemistry 1977, 16, 5470.
(14) See SI for experimental details.
In summary, these results, coupled with information obtained
from previous mechanistic studies,10,18 are consistent with the
following mechanism of HppE-catalyzed 1,2-phosphono migra-
tion (Scheme 2B and Figure S3). First, (R)-1-HPP (17) binds to
the ferrous iron of HppE in a bidentate fashion through its
hydroxyl and phosphonate moieties and organizes the iron
center to coordinate molecular oxygen. O2 then binds, generating
a ferric-superoxo species that abstracts the pro-R H atom from
C2. Proton-coupled electron transfer to the resulting ferric-
hydroperoxo species generates a highly reactive ferryl
intermediate (18) that oxidizes the C2-centered substrate radical
to the corresponding 2° carbocation (19). The carbocation thus
formed induces a 1,2-shift of the phosphono moiety to generate
the aldehyde product (20). Finally, product release and
reduction of the ferric iron back to the ferrous state completes
the catalytic cycle. To our knowledge, this is the first example of
enzymatic cleavage of a C−P bond induced by the formation of a
carbocation. As such, it represents a new paradigm for biological
C−P bond cleavage.
̇
(15) Zyman
Tetrahedron: Asymmetry 1996, 7, 1277.
́ ́
czyk-Duda, E.; Skwarczynski, M.; Lejczak, B.; Kafarski, P.
(16) The configuration of the substrate governs its enzymatic fate.9b
The S-epimer of 1-HPP is converted to an acylphosphonate, whereas the
phosphonate migration reaction is observed with the R-epimer.10
(17) The calculated IEs were obtained as the difference in the
electronic energies of the radical and cationic species using the
optimized structure of the corresponding radical. This was done because
the phosphonate group was found to migrate to the 2 position during
geometry optimization of the cationic species. The reported values can
thus be considered an upper limit for the IE differences.
(18) (a) Yan, F.; Moon, S. J.; Liu, P.; Zhao, Z.; Lipscomb, J. D.; Liu, A.;
Liu, H.-w. Biochemistry 2007, 46, 12628. (b) Mirica, L. M.; McCusker, K.
P.; Munos, J. W.; Liu, H.-w.; Klinman, J. P. J. Am. Chem. Soc. 2008, 130,
8122. (c) Yun, D.; Dey, M.; Higgins, L. J.; Yan, F.; Liu, H.-w.; Drennan,
C. L. J. Am. Chem. Soc. 2011, 133, 11262. (d) Huang, H.; Chang, W.-c.;
Pai, P.-J.; Romo, A.; Mansoorabadi, S. O.; Russell, D. H.; Liu, H.-w. J.
Am. Chem. Soc. 2012, 134, 16171.
ASSOCIATED CONTENT
* Supporting Information
Experimental details and computational methods. This material
■
S
D
dx.doi.org/10.1021/ja403441x | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX