ChemComm
Communication
and tolerating multiple points of diversity this reaction should
find use in complex natural product synthesis as well as
compound library production. Work to expand and apply these
findings is currently underway.
We gratefully acknowledge the University of Oxford and
Universities UK for an ORS Award (to M.L.), the EPSRC
(studentships to A.H. and D.M.B. and Leadership Fellowship
to D.J.D.), GlaxoSmithKline (studentship to A.H.), AstraZeneca
(studentship to D.M.B) and the FWO-Vlaanderen (P.B. and W.H.).
Notes and references
1 For reviews, see: (a) K. C. Nicolaou and J. S. Chen, Chem. Soc. Rev.,
2009, 38, 2993; (b) C. Grondal, M. Jeanty and D. Enders, Nat. Chem.,
2010, 2, 167.
2 For reviews, see: (a) G. Desimoni, G. Faita and K. A. Jørgensen,
Chem. Rev., 2006, 106, 3561; (b) T. Mallat, E. Orglmeister and
A. Baiker, Chem. Rev., 2007, 107, 4863; (c) L. Stegbauer,
F. Sladojevich and D. J. Dixon, Chem. Sci., 2012, 3, 942;
(d) Y.-W. Sun, P.-L. Zhu, Q. Xu and M. Shi, RSC Adv., 2013, 3, 3153.
´
˜
3 For recent examples, see: (a) T. R. Ibarra-Rivera, R. Gamez-Montano
and L. D. Miranda, Chem. Commun., 2007, 3485; (b) F.-A. Kang and
Z. Sui, Tetrahedron Lett., 2011, 52, 4204; (c) L. I. Palmer and J. Read
de Alaniz, Angew. Chem., Int. Ed., 2011, 50, 7167; (d) M.-N. Lin,
S.-H. Wu and M.-C. P. Yeh, Adv. Synth. Catal., 2011, 353, 3290;
(e) M.-C. P. Yeh, C.-W. Fang and H.-H. Lin, Org. Lett., 2012, 14,
1830.
4 For reviews, see: (a) A. S. K. Hashmi, Angew. Chem., Int. Ed., 2000,
39, 3590; (b) N. Krause and A. S. K. Hashmi, Modern Allene Chemistry,
Wiley-VCH, Weinheim, 2004; (c) S. Ma, Chem. Rev., 2005, 105, 2829;
(d) M. Brasholz, H.-U. Reissig and R. Zimmer, Acc. Chem. Res., 2009,
42, 45; (e) N. Krause and C. Winter, Chem. Rev., 2011, 111, 1994;
( f ) S. Yu and S. Ma, Angew. Chem., Int. Ed., 2012, 51, 3074. For
selected examples, see: (g) B. M. Trost, A. B. C. Simas, B. Plietker,
Scheme 2 Scope of the carbocyclisation of various pro-nucleophiles with
3,5-dimethyl iodobenzene and vinyl iodides.
¨
C. Jakel and J. Xie, Chem.–Eur. J., 2005, 11, 7075; (h) Z. Zhang, C. Liu,
R. E. Kinder, X. Han, H. Qian and R. A. Widenhoefer, J. Am. Chem.
Soc., 2006, 128, 9066; (i) N. Morita and N. Krause, Angew. Chem., Int.
Ed., 2006, 45, 1897; ( j) B. M. Trost, J. Xie and J. D. Sieber, J. Am.
Chem. Soc., 2011, 133, 20611; (k) J. Cheng, X. Tang, Y. Yu and S. Ma,
Chem. Commun., 2012, 48, 12074; (l) M. Li, S. Datta, D. M. Barber
and D. J. Dixon, Org. Lett., 2012, 14, 6350.
5 M. Li and D. J. Dixon, Org. Lett., 2010, 12, 3784.
6 (a) P. Jakubec, D. M. Cockfield and D. J. Dixon, J. Am. Chem. Soc.,
2009, 131, 16632; (b) A. F. Kyle, P. Jakubec, D. M. Cockfield,
E. Cleator, J. Skidmore and D. J. Dixon, Chem. Commun., 2011,
47, 10037; (c) P. Jakubec, A. F. Kyle, J. Calleja and D. J. Dixon,
Tetrahedron Lett., 2011, 52, 6094; (d) P. Jakubec, A. Hawkins,
W. Felzmann and D. J. Dixon, J. Am. Chem. Soc., 2012, 134, 17482;
(e) A. Hawkins, P. Jakubec, A. Ironmonger and D. J. Dixon,
Tetrahedron Lett., 2012, 54, 365.
7 (a) K. Hiroi, F. Kato and A. Yamagata, Chem. Lett., 1998, 397;
(b) K. Hiroi, Y. Hiratsuka, K. Watanabe, I. Abe, F. Kato and
M. Hiroi, Tetrahedron: Asymmetry, 2002, 13, 1351; (c) F. Kato and
K. Hiroi, Chem. Pharm. Bull., 2004, 52, 95.
8 (a) R. C. Larock and J. M. Zenner, J. Org. Chem., 1995, 60, 482;
(b) R. C. Larock and J. M. Zenner, J. Org. Chem., 1999, 64, 7312.
9 (a) S. Ma, N. Jiao, Z. Zheng, Z. Ma, Z. Lu, L. Ye, Y. Deng and G. Chen,
Org. Lett., 2004, 6, 2193; (b) Q. Yang, X. Jiang and S. Ma, Chem.–Eur. J.,
2007, 13, 9310; (c) W. Shu, Q. Yang, G. Jia and S. Ma, Tetrahedron,
2008, 64, 11159.
10 For seminal work, see: (a) D. A. Evans, K. A. Woerpel, M. M. Hinman
and M. M. Faul, J. Am. Chem. Soc., 1991, 113, 726; (b) E. J. Corey,
N. Imai and H.-Y. Zhang, J. Am. Chem. Soc., 1991, 113, 728. For
recent advancements, see: (c) B. Liu, S.-F. Zhu, W. Zhang, C. Chen
and Q.-L. Zhou, J. Am. Chem. Soc., 2007, 129, 5834; (d) C. Chen,
S.-F. Zhu, B. Liu, L.-X. Wang and Q.-L. Zhou, J. Am. Chem. Soc., 2007,
129, 12616; (e) W. Shu and S. Ma, Chem. Commun., 2009, 6198.
Scheme 3 Carbocyclisation of pro-nucleophile 1l with 3,5-dimethyl iodobenzene.
successfully afforded the desired spirolactam products in high
yields (4k and 4l, Scheme 2).
Finally, N-tosylated g-lactam derived pro-nucleophile 1l,
a substrate less reactive than indanone-derived systems, under-
went cyclisation with 3,5-dimethyl iodobenzene to afford
spiropiperidin-2-one 4m in good yield with 83% ee (Scheme 3).
In the absence of a suitably crystalline spirocyclic product or
derivative for single crystal X-ray diffraction, the relative
configuration of spirolactams 2 and 4 were assigned by analogy
to our previous study5 and by NOESY analysis of compound 4b
(see ESI†). The absolute configuration was determined by
comparison of the measured and computed vibrational circular
dichroism (VCD) spectra.12 Using this method, the absolute
configuration of 4b was assigned as (2R,40S) with 99%
confidence.
In summary, we have developed a mild and efficient palladium 11 Y. Sato, M. Sodeoka and M. Shibasaki, Chem. Lett., 1990, 1953.
12 (a) E. De Gussem, P. Bultinck, F. Marion, J. Marchand-Brynaert,
catalysed enantio- and diastereoselective cyclisation cascade
methodology for the synthesis of a range of stereodefined arylated
C. V. Stevens and W. Herrebout, Phys. Chem. Chem. Phys., 2012,
14, 8562; (b) E. Debie, E. De Gussem, R. K. Dukor, W. Herrebout,
or vinylated spirolactam compounds. Being operationally simple
L. A. Nafie and P. Bultinck, ChemPhysChem, 2011, 12, 1542.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 5265--5267 5267