Journal of the American Chemical Society
Page 4 of 5
62, 2439. (d) Davies, H. M. L.; Manning, J. R. Nature 2008, 451, 417. (e)
intermediate. To distinguish between these possibilities, we
measured the kinetic isotope effect (KIE) from the reaction
of a mixture of C6H6 and C6D6. The KIE from these experi-
Cho, S. H.; Kim, J. Y. Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068.
(8) (a) Brasche, G.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47,
1932. (b) Wang, H.; Wang, Y.; Peng, C.; Zhang, J.; Zhu, Q. J. Am. Chem.
Soc. 2010, 132, 13217. (c) Cho, S. H.; Yoon, J.; Chang, S. J. Am. Chem.
Soc. 2011, 133, 5696. (d) Kawano, T.; Hirano, K.; Satoh, T.; Miura, M. J.
Am. Chem. Soc. 2010, 132, 6900. (e) Wang, Q.; Schreiber, S. L. Org. Lett.
2009, 11, 5178. (f) Monguchi, D.; Fujiwara, T.; Furukawa, H.; Mori, A.
Org. Lett. 2009, 11, 1607.
1
2
3
4
5
6
7
8
ments was 4.10
0.06, implying that the C-H bond is
cleaved irreversibly.24 Thus, the species that cleaves the C-H
bond in the acetoxylation and the amination is different.
Studies to compare CMD pathways for reactions of
phthalimidate and acetate complexes will be the subject of
future work.
In conclusion, we have developed a regioselective, inter-
molecular Pd-catalyzed oxidative amination of arenes with
phthalimide. Sequential addition of oxidant allows the reac-
tions to occur in good yield in neat arene. This process
points to an avenue to develop alternatives to palladium-
catalyzed amination of aryl halides and the potential to con-
duct sterically controlled amination without initial boryla-
tion of the arene. Further studies to expand the scope of ni-
trogen sources based on mechanistic data are ongoing.
(9) (a) Tsang, W. C. P.; Zheng, N.; Buchwald, S. L. J. Am. Chem. Soc.
2005, 127, 14560. (b) Neumann, J.; Rakshit, S.; Dro€ge, T.; Glorius, F.
Angew. Chem., Int. Ed. 2009, 48, 6892. (c) Tan, Y.; Hartwig, J. F. J. Am.
Chem. Soc. 2010, 132, 3676. (d) Thu, H.-Y.; Yu, W.-Y.; Che, C.-M. J. Am.
Chem. Soc. 2006, 128, 9048. (e) Ng, K.-H.; Chan, A. S. C.; Yu, W.-Y. J.
Am. Chem. Soc. 2010, 132, 12862.
(10) (a) Cho, S. H.; Yoon, J.; Chang, S. J. Am. Chem. Soc. 2011, 133,
5696. (b) Antonchick A.P.; Samanta R.; Kulikov K.; Lategahn J. Angew.
Chem., Int. Ed. 2011, 50, 8605. (c) Kim, J. J.; K, J.; Cho, S. H.; Chang, S. J.
Am. Chem. Soc. 2011, 133, 16382. (d) Kantak, A. A.; Potavathri, S.; Bar-
ham, R. A.; Romano, K. M.; Deboef, B. J. Am. Chem. Soc. 2011, 133,
19960.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(11) For Pd(II)/Pd(IV)-catalyzed oxidative amination see: (a) Engle,
K. M.; Mei, T.-S.; Wang, X.; Yu, J.-Q. Angew. Chem., Int. Ed. 2011, 50,
1478. (b) Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 14058. (c)
Jordan-Hore, J. A.; Johansson, C. C. C.; Gulias, M.; Beck, E. M.; Gaunt, M.
J. Am. Chem. Soc. 2008, 130, 16184. (d) Mei, T.-S.; Wang, X.; Yu, J.-Q. J.
Am. Chem. Soc. 2009, 131, 10806. (e) Xiao, B.; Gong, T.-J.; Xu, J.; Liu, Z.-
J.; Liu, L. J. Am. Chem. Soc. 2011, 133, 1466. (f) Sun, K.; Li, Y.; Xiong, T.;
Zhang, J.; Zhang, Q. J. Am. Chem. Soc. 2011, 133, 1694.
ASSOCIATED CONTENT
Supporting Information. Detailed experimental proce-
dures, supplementary tables of data, and full characterization of
new compounds. This material is available free of charge via the
(12) Hartwig, J. F. Acc. Chem. Res. 2012, 45, 864.
(13) Tzschucke, C. C.; Murphy, J. M.; Hartwig, J. F. Org. Lett. 2007, 9,
761.
AUTHOR INFORMATION
(14) For Pd-catalyzed oxidative coupling of arenes with regioselectivity
controlled by steric effects see Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc.
2007, 129, 11904.
Corresponding Author
(15) (a) Yoneyama, T.; Crabtree, R. H. J. Mol. Catal. A. 1996, 108, 35.
(b) Dick, A. R.; Hall, K. H.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126,
2300. (c) Emmert, M. H.; Cook, A. K.; Xie, Y. J.; Sanford, M. S. Angew.
Chem., Int. Ed. 2011, 50, 9409.
Author Contributions
‡These authors contributed equally.
(16) See Supporting Information for more details.
(17) More than three products with m/z expected for the desired ami-
nation product were observed. Currently we hypothesize the by-product to
be arylation of the aromatic ring on saccharin ortho to the sulfimide func-
tional group. Related sulfonamide functional group is known to be an excel-
lent directing group. See: (a) Watanabe, H.; Gay, R. L.; Hauser, C. R. J.
Org. Chem. 1968, 33, 900. (b) Watanabe, H.; Schwartz, R. A.; Hauser, C.
R.; Lewis, J.; Slocum, D. W. Can. J. Chem. 1969, 47, 1543. (c) Slocum, D.
W.; Jennings, C. A. J. Org. Chem. 1976, 41, 3653.
ACKNOWLEDGMENT
Acknowledgments are made to the National Science Founda-
tion for financial support through the Center for Enabling New
Technologies through Catalysis (CENTC) and Johnson-
Matthey for a gift of Pd(OAc)2. We thank Prof. William D.
Jones and Prof. Karen I. Goldberg for helpful discussions.
(18) The constitutional isomer ratios were determined by comparison
to the authentic products synthesized according to the literature protocol:
Capitosti, S. M.; Hansen, T. P.; Brown, M. L. Bioorg. Med. Chem. 2004,
12, 327.
(19) Experiments conducted to probe the stability of ortho-amination
product suggest that the ortho-amination product is stable under the ami-
nation reaction conditions. See Supporting Information.
REFERENCES
(1) (a) Cheng, J.; Kamiya, K.; Kodama, I. Cardiovasc. Drug Rev. 2001,
19, 152. (b) Sánchez, C.; Méndez, C.; Salas, J. A. Nat. Prod. Rep. 2006, 23,
1007. (c) Bhattacharya, S.; Chaudhuri, P. Curr. Med. Chem. 2008, 15,
1762. (d) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003,
103, 893.
(20) Additional experiments suggest that the decrease in selectivity can-
not be attributed to ligand oxidation. See Supporting Information.
(21) This observation was consistent with the reactivity of other 1,3-
disubstituted vs 1,2-disubstituted arenes reported in Scheme 1. Compari-
son of the crude GC traces of reactions conducted with a mixture of 1,2-
disubstituted arenes and 1,3-disubsituted arenes suggest that both reactions
produce comparable amounts of acetoxylation products. This observation
implies that competitive acetoxylation of 1,3-disubsituted arene is not
responsible for the lower yield of amination products with the 1,3-
disubstituted substrates. See Supporting Information for the primary data.
(22) Green, T. W.; Wutz, P. G. M. In Protective Groups in Organic Syn-
thesis, Wiley-Interscience: New York, 1999, 564-566, 740-743.
(23) (a) Lafrance, M.; Rowley, C. N.; Woo, T. K.; Fagnou, K. J. Am.
Chem. Soc. 2006, 128, 8754., (b) Garcia-Cuadrado, D.; Braga, A. A. C.;
Maseras, F.; Echavarren, A. M. J. Am. Chem. Soc. 2006, 128, 1066. (c)
Garcia-Cuadrado, D.; de Mendoza, P.; Braga, A. A. C.; Maseras, F.; Ec-
havarren, A. M. J. Am. Chem. Soc. 2007, 129, 6880. (d) Gorelsky, S. I.;
Lapointe, D.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 10848. (e)
Lapointe, D.; Fagnou, K. Chem. Lett. 2010, 39, 1118.
(2) (a) Larock, R. C. In Comprehensive Organic Transformations;
VCH: New York, Weinheim, Cambridge, 1989. (b) March, J. In Advanced
Organic Chemistry, 4 th Ed.; Wiley: New York, 1992.
(3) (a) Monguchi, D.; Fujiwara, T.; Furukawa, H.; Mori, A. Org. Lett.
2009, 11, 1607. (b) Evano, G.; Blanchard, N.; Toumi, T. Chem. Rev.
2008, 108, 3054. (c) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed.
2009, 48, 6954. (d) Sperotto, E.; van Klink, G. P. M; van Koten, G.; de
Vries, J. G. Dalton Trans. 2010, 39, 10338. (e) Beletskaya, I. P.; Chepra-
kov, A. V. Coord. Chem. Rev. 2004, 248, 2337.
(4) (a) Hartwig, J. F. In Handbook of Organopalladium Chemistry for
Organic Synthesis; Negishi, E., Ed.; Wiley-Interscience: New York, 2002; p
1051. (b) Jiang, L.; Buchwald, S. L. Metal-Catalyzed Cross- Coupling Reac-
tions, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2004; Vol. 2, p 699.
(5) (a) Lakshman, M. K.; Hilmer, J. H.; Martin, J. Q.; Keeler, J. C.;
Dinh, Y. Q. V.; Ngassa, F. N.; Russon, L. M. J. Am. Chem. Soc. 2001, 123,
7779. (b) Plante, O. J.; Buchwald, S. L.; Seeberger, P. H. J. Am. Chem. Soc.
2000, 122, 7148.
(6) (a) Margolis, B. J.; Swidorski, J. J.; Rogers, B. N. J. Org. Chem.
2003, 68, 644. (b) Damon, D. B.; Dugger, R. W.; Scott, R. W.
WO2002088085 A2, 30.4.2001; (c) Damon, D. B.; Dugger, R. W.; Scott, R.
W. WO 2002088069 A2, 30.4.2001; (d) Damon, D. B.; Dugger, R. W.;
Hubbs, S. E.; Scott, J. M.; Scott, R. W. Org. Proc. Res. Dev. 2006, 10, 472.
(7) For reviews of C-H amination, see: (a) Mueller, P.; Fruit, C. Chem.
Rev. 2003, 103, 2905. (b) Davies, H. M. L.; Long, M. S. Angew. Chem.,
Int. Ed. 2005, 44, 3518. (c) Dick, A. R.; Sanford, M. S. Tetrahedron 2006,
(24) The observed KIE is identical to that for acetoxylation reported in
ref. 15a and slightly lower than that determined for the acetoxylation prod-
uct under our reaction conditions with phthalimide (5.7 0.2). The KIE
for the amination of
a mixture of protiated and deuterated 1,2-
dichlorobenzene with phthalimide under the conditions we developed was
2.8 0.1.
ACS Paragon Plus Environment