ORGANIC
LETTERS
2013
Vol. 15, No. 11
2802–2805
Synthesis of Coumarin/Pyrrole-Fused
Heterocycles and Their Photochemical
and Redox-Switching Properties
Chi-Hui Lin and Ding-Yah Yang*
Department of Chemistry, Tunghai University, No. 181, Section 3, Taichung Port Road,
Taichung City 40704, Taiwan, Republic of China
Received April 23, 2013
ABSTRACT
Two coumarin/pyrrole-fused heterocycles were synthesized to investigate their photochemical and redox-switching properties. Photooxidation of
the colorless diphenyl-substituted pyrrolocoumarin resulted in a distinct change to red and a sharp decrease in fluorescence intensity. The
photooxidized product can be swiftly reverted to the original form by NaCNBH3 reduction or hydrogenation.
Coumarin and its derivatives represent an important
class of heterocycles that have wide applications in the
areas of medicinal chemistry1 and functional materials.2
When coumarins are fused with other molecular scaffolds,
the resulting compounds may generally exhibit promising
or even unprecedented properties. For instance, coumarin/
phenanthridine-fused heterocycles have been found to pos-
sess unique negative thermochromic properties,3 whereas
coumarin/pyran-fused heterocycles have been reported to
exhibit molecular switching properties.4 Since some pyrrole
derivatives have been documented to be light-sensitive and
are prone to undergo oxidation upon UV irradiation,5 we
speculate that coumarin/pyrrole-fused heterocycles may also
reveal intriguing functional properties. In our continuing
efforts to develop novel coumarin-based functional materials,
we report the synthesis of two 7-dimethylaminocoumarin/
pyrrole-fused derivatives and subsequent evaluation of their
photochemical and redox-switching properties. Our studies
indicate that both compounds are highly sensitive to light,
and one may potentially function as an organic redox switch
with color change and emission variation as two output
properties.
Scheme 1 shows the preparation of the pyrrolocoumar-
ins 1 and 2. The microwave-promoted coupling of 3-acyl-
coumarins 36 or 47 with 1-amino-1-phenylpropan-2-one
hydrochloride (5)8 using diisopropylethylamine (DIPEA)
as a base in dichloroethane (DCE) generated the 4-amino-
substituted coumarin 6 or 7. The subsequent refluxing 6
and 7 in the presence of a catalytic amount of p-TsOH in
methanol for 0.5 h afforded the target pyrrolocoumarins 1
and 2 almost quantitatively.
(1) (a) James, C. A.; Coelho, A. L.; Gevaert, M.; Forgione, P.;
Snieckus, V. J. Org. Chem. 2009, 74, 4094–4103. (b) Thasana, N.;
Worayuthakarn, R.; Kradanrat, P.; Hohn, E.; Young, L. R.;Ruchirawat,
S. J. Org. Chem. 2007, 72, 9379–9382. (c) Kostova, I. Curr. HIV Res. 2006, 4,
347–363. (d) Yao, T. L.; Yue, D. W.; Larock, R. C. J. Org. Chem. 2005, 70,
9985–9989. (e) Borges, F.; Roleira, F.; Milhazes, N.; Santana, L. Curr. Med.
Chem. 2005, 12, 887–916. (f) Yu, D. L.; Suzuki, M.; Xie, L. Med. Res. Rev.
2003, 23, 322–345.
(2) (a) Goguen, B. N.; Aemissegger, A.; Imperiali, B. J. Am. Chem.
Soc. 2011, 133, 11038–11041. (b) Hori, Y.; Ueno, H.; Mizukami, S.;
Kikuchi, K. J. Am. Chem. Soc. 2009, 131, 16610–16611. (c) Chen, L.; Hu,
T. S.; Yao, Z. J. Eur. J. Org. Chem. 2008, 6175–6182. (d) Komatsu, K.;
Urano, Y.; Kojima, H.; Nagano, T. J. Am. Chem. Soc. 2007, 129, 13447–
13454. (e) Lee, M. T.; Yen, C. K.; Yang, W. P.; Chen, H. H.; Liao, C. H.;
Tsai, C. H.; Chen, C. H. Org. Lett. 2004, 6, 1241–1244. (f) Hara, K.;
Kurashige, M.; Dan-oh, Y.; Kasada, C. New J. Chem. 2003, 27, 783–785.
(g) Quanten, E.; Adriaens, P.; Deschryver, F. C.; Roelandts, R.;
Degreef, H. Photochem. Photobiol. 1986, 43, 485–492.
(5) Leete, E. J. Am. Chem. Soc. 1961, 83, 3645–3653.
(6) Majumdar, K. C.; Bhattacharyya, T. Tetrahedron Lett. 2001, 42,
4231–4233.
(7) Kuo, P. Y.; Yang, D. Y. J. Org. Chem. 2008, 73, 6455–6458.
(8) Fitton, A. O.; Muzanila, C. N.; Odusanya, O. M.; Oppong-
Boachie, F. K.; Duckworth, S. J.; Hadi, A. H. A. J. Chem. Res 1988,
11, 352–353.
(3) Chen, J. J.; Li, K. T.; Yang, D. Y. Org. Lett. 2011, 13, 1658–1661.
(4) Li, K. T.; Lin, Y. B.; Yang, D. Y. Org. Lett. 2012, 14, 1190–1193.
r
10.1021/ol401138q
Published on Web 05/28/2013
2013 American Chemical Society