C-4 selective alkenylation of pyridines by the bimetallic
nickel aluminum catalyst.3f,7c The Chang group reported
the C-2 dehydrative olefination of pyridine N-oxides with
external oxidants.7d Recently, the Yu group developed a
novel C-3 selective olefination catalyzed by Pd/1,10-
phenanthroline.8 There are a few other important discov-
eries in this area;9 however, many of these methods still
suffer from a limited substrate scope, require a large excess
of pyridines, and employ symmetrical alkynes with little
functionality or prefunctionalized alkenyl iodides as the
coupling partners.
Scheme 1. Strategy for the Synthesis of 3,4-Dihydro-1,8-
naphthyridin-2(1H)-ones (4) Using Direct Oxidative
Olefination of Pyridines as a Key Step
Recently there has been great success in the Rh(III)-
catalyzed oxidative CÀH olefination of simple arenes
owing to high efficiency and good functional group
tolerance;10,11 however, reported examples of Rh-catalyzed
oxidative CÀH/CÀH cross-coupling reactions between
pyridines and alkenes are still very limited. To the best
of our knowledge, there are only a few isolated exam-
ples of Rh(III)-catalyzed CÀH activation of pyridines,
except that Li has reported systematic studies of
Rh(III)-catalyzed olefination and oxidative annula-
tion of isonicotinamides.9c,12 Thus, it still remains a
challenge to achieve selective direct functionalization
of pyridines, especially in terms of substrate scope, syn-
thetic versatility, and catalyst loading.
were common synthons to biologically important com-
pounds, such as 1À3.13 It has been reported that com-
pounds 1À3 were a FabI inhibitor,13a an antibacterial
agent,13b and a selective ligand of dopamine D2 receptors,13c
respectively (Scheme 1). We realized that the directed
alkenylation of N-(pyridin-2-yl)pivalamide 6b would allow
the straightforward synthesis of a large family of such
skeletons from abundant 2-aminopyridine derivatives.
Our studies commenced with applying reaction condi-
tions previously established by Glorius for the Rh(III)-
catalyzed oxidative Heck reaction of acetanilide and
styrene.11c However, no desired product was observed
when 6a was used as the substrate (Table 1, entry 1). We
were delighted to find that the reaction of N-(pyridin-2-yl)-
pivalamide 6b with ethyl acrylate resulted in the formation
of the desired product, albeit in low yield (entry 2). DCE was
found to be the ideal solvent for the reaction providing 5c in
quantitative yield (entry 4). Cu(OAc)2 is essential to the
success of this tranformation, while other additives such as
Ag2CO3 and Zn(OAc)2 resulted in low yields (entries 5À6).
Attempts to lower the Cu(OAc)2 loading under the atmo-
spheric pressure of O2 led to reduced yields (entries 7À8).
Notably, N-(pyridin-2-yl)acetamide 6a decomposed to
2-aminopyridine under the optimized reaction conditions
(entry 9).
3-Alkenyl pyridines are valuable building blocks for
pharmaceuticals owing to their functional diversity. For
example, 3-alkenyl-2-aminopyridines (5) were precursors
to 3,4-dihydro-1,8-naphthyridin-2(1H)-ones (4), which
(6) For selected reviews, see: (a) Kozhushkov, S. I.; Ackermann, L.
Chem. Sci. 2013, 4, 886. (b) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H.
Chem. Rev. 2012, 112, 5879. (c) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu,
J.-Q. Acc. Chem. Res. 2012, 45, 788. (d) Yu, D.-G.; Li, B.-J.; Shi, Z.-J.
Tetrahedron 2012, 68, 5130. (e) Yeung, C. S.; Dong, V. M. Chem. Rev.
2011, 111, 1215. (f) Lyons, T. W. M.; Sanford, S. Chem. Rev. 2010, 110,
1147. (g) Ferreira, E. M.; Zhang, H.; Stolz, B. M. Oxidative Heck-Type
Reactions (Fujiwara-Moritani Reactions). In The MizorokiÀHeck Re-
action; Oestreich, M., Ed.; WILEY: Chichester, 2009; pp 345À382.
(7) (a) Kanyiva, K. S.; Nakao, Y.; Hiyama, T. Angew. Chem., Int. Ed.
2007, 46, 8872. (b) Nakao, Y.; Kanyiva, K. S.; Hiyama, T. J. Am. Chem.
Soc. 2008, 130, 2448. (c) Tsai, C.-C.; Shih, W.-C.; Fang, C.-H.; Li, C.-Y.;
Ong, T.-G.; Yap, G. P. A. J. Am. Chem. Soc. 2010, 132, 11887. (d) Cho,
S. H.; Hwang, S. J.; Chang, S. J. Am. Chem. Soc. 2008, 130, 9254.
(8) Ye, M.; Gao, G.-L.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 6964.
(9) (a) Mousseau, J. J.; Bull, J. A.; Charette, A. B. Angew. Chem., Int.
Ed. 2010, 49, 1115. (b) Murakami, M.; Hori, S. J. Am. Chem. Soc. 2003,
125, 4720. (c) Wei, X.; Wang, F.; Song, G.; Du, Z.; Li, X. Org. Biomol.
Chem. 2012, 10, 5521.
(10) For reviews, see: (a) Patureau, F.; Wencel-Delord, W. J.; Glorius,
F. Aldrichimica Acta 2012, 45, 31. (b) Song, G.; Wang, F.; Li, X. Chem.
Soc. Rev. 2012, 41, 3651. (c)Satoh, T.;Miura, M. Chem.;Eur. J. 2010, 16,
11212. (d) Colby, D. A.; Bergman, R. G.; Ellm, J. A. Chem. Rev. 2010,
110, 624.
(11) For selected examples, see: (a) Ueura, K.; Satoh, T.; Miura, M.
Org. Lett. 2007, 9, 1407. (b) Mochida, S.; Hirano, K.; Satoh, T.; Miura,
M. J. Org. Chem. 2009, 74, 6295. (c) Patureau, F. W.; Glorius, F. J. Am.
Chem. Soc. 2010, 132, 9982. (d) Patureau, F. W.; Besset, T.; Glorius, F.
Angew. Chem., Int. Ed. 2011, 50, 1064. (e) Rakshit, S.; Grohmann, C.;
Besset, T.; Glorius, F. J. Am. Chem. Soc. 2011, 133, 2350. (f) Tsai, A. S.;
Brasse, M.; Bergman, R. G.; Ellman, J. A. Org. Lett. 2011, 13, 540. (g)
Chen, J.; Song, G.; Pan, C.-L.; Li, X. Org. Lett. 2010, 12, 5426. (h) Park,
S. H.; Kim, J. Y.; Chang, S. Org. Lett. 2011, 13, 2372. (i) Li, H.; Li, Y.;
Zhang, X.-S.; Chen, K.; Wang, X.; Shi, Z.-J. J. Am. Chem. Soc. 2011,
133, 15244. (j) Zhen, W.; Wang, F.; Zhao, M.; Du, Z.; Li, X. Angew.
Chem., Int. Ed. 2012, 51, 11819.
With the optimized conditions in hand, we further
studied the scope and limitations of this reaction
(Scheme 2). Different acrylates all gave good to excellent
yields (5bÀ5d), while unactivated alkenes such as styrene
failed in this case (5a). A wide range of 2-aminopyridine
derivatives are compatible with this protocol, furnishing
the desired products in good yields. Importantly, halides,
such as chloride, bromide, and iodide, survived under the
standard or slightly modified conditions, affording the
(13) (a) Seefeld, M. A.; Miller, W. H.; Newlander, K. A.; Burgess,
W. J.; DeWolf, W. E., Jr.;Elkins, P. A.; Head, M. S.; Jakas, D. R.; Janson,
C. A.; Keller, P. M.;Manley, P. J.; Moore, T. D.; Payne, D. J.; Pearson, S.;
Polizzi, B. J.; Qiu, X.; Rittenhouse, S. F.; Uzinskas, I. N.; Wallis, N. G.;
Huffman, W. F. J. Med. Chem. 2003, 46, 1627. (b) Alemparte-Gallardo,
C.; Barros-Aguirre, D.; Cacho-Izquierdo, M.; Fiandor-Roman, J. M.;
Remuinan-Blanco, M. J. W.O. Patent No. 2009/141399b, 2009. (c) Jin, J.;
Roth, B.; Frye, S. W.O. Patent No. 2012/003418, 2012.
(12) (a) Fukutani, T.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem.
2011, 76, 2867. (b) Hyster, T. K.; Rovis, T. Chem. Commun. 2011, 47,
11846. (c) Wang, H.; Glrius, F. Angew. Chem., Int. Ed. 2012, 51, 7318. (d)
Song, G.; Gong, X.; Li, X. J. Org. Chem. 2011, 76, 7583.
B
Org. Lett., Vol. XX, No. XX, XXXX