conditions. Recently, directed Rh-catalyzed methods employ-
ing chloroamines,6f,g aryl azides6h and arylsulfonyl azides,6i,j
and NFSI6k have been reported to give access to arylamines
and arylsulfamides. Herein, we wish to report on a mild
Rh(III)-catalyzed directed ortho-amidation with aroyloxy-
carbamates giving access to N-Boc protected arylamines
using pyridine or O-methyl hydroxamic acid as directing
groups (DGs). In our continued interest to develop broadly
applicable, mild, and efficient CÀH activation methods
using the Cp*Rh(III) catalyst,7,8 we initially investigated
the formation of primary aromatic amine derivatives via
Rh-catalyzed CÀH activation followed by electrophilic
amination, inspired by a recent report on the amination of
boronic acids with O-(2,4-dinitrophenyl)hydroxylamine.9
While this reagent was not suitable, we found that the reac-
tion of 2-phenylpyridine (1a) with 2.5 mol % [RhCp*Cl2]2,
10 mol % AgSbF6, 1.0 equiv of KOAc, and 1.0 equiv of
Scheme 1. Initial o-CÀH Amination of 2-Phenylpyridine
Scheme 2. Survey of the Different Electrophilic Amidation
Partnersa
PivONH2 HOTf10 (2a), in MeCN at 100 °C, produced the
3
corresponding free aniline 3 in 40% yield (Scheme 1).
(6) Selected examples of electrophilic nitrogen sources in CÀH
activation: Using Pd catalyst: (a) Ng, K.-H.; Chan, A. S. C.; Yu,
W.-Y. J. Am. Chem. Soc. 2010, 132, 12862. (b) Liu, X.-Y.; Gao, P.; Shen,
Y.-W.; Liang, Y.-M. Org. Lett. 2011, 13, 4196. (c) Yoo, E. J.; Ma, S.; Mei,
T.-S.; Chan, K. S. L.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 7652. Using
Cu catalyst: (d) Kawano, T.; Hirano, K.; Satoh, T.; Miura, M.
J. Am. Chem. Soc. 2010, 132, 6900. (e) Matsuda, N.; Hirano, K.; Satoh,
T.; Miura, M. Org. Lett. 2011, 13, 2860. Using Rh catalyst: (f) Ng,
K.-H.; Zhou, Z.; Yu, W.-Y. Org. Lett. 2011, 14, 272. (g) Grohmann, C.;
Wang, H.; Glorius, F. Org. Lett. 2011, 14, 656. (h) Ryu, J.; Shin, K.;
Park, S. H.; Kim, J. Y.; Chang, S. Angew. Chem., Int. Ed. 2012, 51, 9904.
(i) Kim, J. Y.; Park, S. H.; Ryu, J.; Cho, S. H.; Kim, S. H.; Chang, S.
J. Am. Chem. Soc. 2012, 134, 9110. (j) Shi, J.; Zhou, B.; Yang, Y.; Li, Y.
Org. Biomol. Chem. 2012, 10, 8953. (k) Tang, R.-J.; Luo, C.-P.; Yang, L.;
Li, C.-J. Adv. Synth. Catal. 2013, 355, 869. Using Ru catalyst and
arylsulfonyl azides: (l) Yadav, M. R.; Rit, R. K.; Sahoo, A. K. Org. Lett.
2013, 15, 1638. (m) Kim, J.; Kim, J.; Chang, S. Chem.;Eur. J. 2013, 19,
7328.
a Reaction conditions: 1a (0.1 mmol), 2 (0.12 mmol), [RhCp*Cl2]2
(2.5 mol %), AgSbF6 (10 mol %), KOAc (0.12 mmol), MeCN, 60 °C,
16 h. The corresponding yields of 4a were determined by crude 1H NMR
analysis using CH2Br2 (7.0 μL) as an internal standard and are given in
parentheses.
(7) Reviews on Rh(III)-catalyzed CÀH activations: (a) Satoh, T.;
Miura, M. Chem.;Eur. J. 2010, 16, 11212. (b) Song, G.; Wang, F.; Li,
X. Chem. Soc. Rev. 2012, 41, 3651. (c) Patureau, F. W.; Wencel-Delord,
J.; Glorius, F. Aldrichimica Acta 2012, 45, 31. See also: (d) Morimoto,
K.; Itoh, M.; Hirano, K.; Satoh, T.; Shibata, Y.; Tanaka, K.; Miura, M.
Furthermore, the analogous reaction with tert-butyl pivaloyl-
oxycarbamate (2b) afforded the N-Boc protected deriva-
tive 4, which can be readily deprotected to give the primary
amine 3.11 This promising finding led us to investigate the
nature of the leaving group in the amination agent in order
to increase its efficiency in the desired CarylÀN bond
formation. A survey of electronically different tert-butyl
aroyloxycarbamates and tert-butyl arylsulfonyloxycar-
bamates12 2 revealed the electron-deficient 4-nitrobenzoyl
(2f) and 2,4,6-trichlorobenzoyl (2g) groups as effective
substituents on the N-atom, giving the amidation product
in excellent yield under relatively mild reaction conditions
(Scheme 2). The sulfonyl derivatives (2h, 2i) showed only
low conversion, although nosyloxycarbamates have been
reported to be effective in a related Pd-catalyzed CÀH
amidation of anilides.6a The potential of this mild
€
Angew. Chem., Int. Ed. 2012, 51, 5359. (e) Hyster, T. K.; Knorr, L.;
Ward, T. R.; Rovis, T. Science 2012, 338, 500. (f) Ye, B.; Cramer, N.
Science 2012, 338, 504. (g) Chan, W.-W.; Lo, S.-F.; Zhou, Z.; Yu, W.-Y.
J. Am. Chem. Soc. 2012, 134, 13565. (h) Zhen, W.; Wang, F.; Zhao, M.;
Du, Z.; Li, X. Angew. Chem., Int. Ed. 2012, 51, 11819. (i) Kwak, J.; Ohk,
Y.; Jung, Y.; Chang, S. J. Am. Chem. Soc. 2012, 134, 17778. (j) Li, B.-J.;
Wang, H.-Y.; Zhu, Q.-L.; Shi, Z.-J. Angew. Chem., Int. Ed. 2012, 51,
3948. (k) Tauchert, M. E.; Incarvito, C. D.; Rheingold, A. L.; Bergman,
R. G.; Ellman, J. A. J. Am. Chem. Soc. 2012, 134, 1482. (l) Lian, Y.;
Huber, T.; Hesp, K. D.; Bergman, R. G.; Ellman, J. A. Angew. Chem.,
Int. Ed. 2013, 52, 629. (m) Dong, J.; Long, Z.; Song, F.; Wu, N.; Guo, Q.;
Lan, J.; You, J. Angew. Chem., Int. Ed. 2013, 52, 580. (n) Neely, J. M.;
Rovis, T. J. Am. Chem. Soc. 2013, 135, 66.
(8) (a) Patureau, F. W.; Besset, T.; Kuhl, N.; Glorius, F. J. Am. Chem.
Soc. 2011, 133, 2154. (b) Rakshit, S.; Grohmann, C.; Besset, T.; Glorius,
F. J. Am. Chem. Soc. 2011, 133, 2350. (c) Wang, H.; Glorius, F. Angew.
Chem., Int. Ed. 2012, 51, 7318. (d) Wang, H.; Grohmann, C.; Nimphius,
€
C.; Glorius, F. J. Am. Chem. Soc. 2012, 134, 19592. (e) Schroder, N.;
Wencel-Delord, J.; Glorius, F. J. Am. Chem. Soc. 2012, 134, 8298. (f)
Kuhl, N.; Hopkinson, M. N.; Glorius, F. Angew. Chem., Int. Ed. 2012,
51, 8230. (g) Wencel-Delord, J.; Nimphius, C.; Wang, H.; Glorius, F.
(11) Deprotection of 4 using TFA in CH2Cl2 for 3 h at rt afforded 3 in
95% isolated yield (see Supporting Information, SI).
€
Angew. Chem., Int. Ed. 2012, 51, 13001. (h) Wang, H.; Schroder, N.;
Glorius, F. Angew. Chem., Int. Ed. 2013, 52, 5386. (i) Shi, Z.; Grohmann,
C.; Glorius, F. Angew. Chem., Int. Ed. 2013, 52, 5393.
(9) Transition-metal-free amination of boronic acids: (a) Zhu, C.; Li,
(12) Selected reviews on O-acylhydroxylamines as electrophilic
amination agents in organic synthesis: (a) Erdik, E. Tetrahedron 2004,
60, 8747. (b) Tamura, Y.; Minamikawa, J.; Ikeda, M. Synthesis 1977, 1.
For original reports on their preparation: (c) Carpino, L. A.; Giza, C. A.;
Carpino, B. A. J. Am. Chem. Soc. 1959, 81, 955. (d) Carpino, L. A. J. Am.
Chem. Soc. 1960, 82, 3133. (e) Marmer, W. N.; Maerker, G. J. Org.
Chem. 1972, 37, 3520. For a recent example employing alkyl 4-chloro-
benzoyloxycarbamates: (f) Harris, L.; Mee, S. P. H.; Furneaux, R. H.;
Gainsford, G. J.; Luxenburger, A. J. Org. Chem. 2010, 76, 358.
€
G.; Ess, D. H.; Falck, J. R.; Kurti, L. J. Am. Chem. Soc. 2012, 134, 18253.
See also the highlight: (b) Coeffard, V.; Moreau, X.; Thomassigny, C.;
Greck, C. Angew. Chem., Int. Ed. 2013, 52, 5684.
(10) This reagentwas introduced by Fagnoufor the installation of the
CONHOPiv directing group: Guimond, N.; Gorelsky, S. I.; Fagnou, K.
J. Am. Chem. Soc. 2011, 133, 6449.
B
Org. Lett., Vol. XX, No. XX, XXXX