ChemComm
Communication
8 J. Yu, L. Zhang and G. Yan, Adv. Synth. Catal., 2012, 354, 2625.
9 Selected recent examples: (a) P. Johannesson, G. Lindeberg,
A. Johannesson, G. V. Nikiforovich, A. Gogoli, B. Synergren, M. Le
Greves, F. Nyberg, A. Karlen and A. Hallberg, J. Med. Chem., 2002,
45, 1767; (b) L. Llauger, H. Z. He, J. Kim, J. Aguirre, N. Rosen,
U. Peters, P. Davies and G. Chiosis, J. Med. Chem., 2005, 48, 2892;
(c) G. De Martino, M. C. Edler, G. La Regina, A. Coluccia,
M. C. Barbera, D. Barrow, R. I. Nicholson, G. Chiosis, A. Brancale,
E. Hamel, M. Artico and R. Silvestri, J. Med. Chem., 2006, 49, 947;
(d) A. Gangjee, Y. B. Zheng, T. Talreja, J. J. Mc Guire, R. L. Kisliuk
and S. F. Queener, J. Med. Chem., 2007, 50, 2046.
10 P. C. B. Page, R. D. Wilkes and D. Reynolds, in Comprehensive
Organic Functional Group Transformations, ed. A. R. Katritzky,
O. Meth-Cohn and C. W. Rees, Elsevier, Oxford, 1995, vol. 2,
ch. 2.03, p. 113.
Scheme 4 Proposed reaction mechanism.
11 (a) J. Laquidara, Chem. Eng. News, 2001, 79, 6; (b) H. Spencer, Chem.
Br., 1977, 13, 240.
12 (a) D. Witt, Synthesis, 2008, 2491; (b) T. Zincke, Chem. Ber., 1911,
44, 769; (c) P. J. Hogg, Trends Biochem. Sci., 2003, 28, 210;
(d) J. A. Burns, J. C. Butler, J. Moran and G. M. Whitesides, J. Org.
Chem., 1991, 56, 2648; (e) O. Dmitrenko, C. Thorpe and R. D. Bach,
One-electron oxidation of III by the eosin Y radical cation
furnishes an electrophilic species which undergoes substitution
in the presence of a large excess of DMSO (solvent).20 A long
radical chain mechanism is unlikely, as 1H NMR monitoring
showed that product formation stopped when the light source
was removed.21 We have investigated the nature of by-products.
Thermal heterolytic cleavage of arenediazonium salts occurs at
elevated temperatures (>40 1C) to give an aryl cation which is
rapidly trapped by the nucleophilic solvent DMSO.22 The resultant
[ArOSMe2]+ was detected using ESI-MS.21
In summary, we have developed a new photocatalytic thiolation
protocol in the presence of only 2 mol% eosin Y, which allows
the facile synthesis of arylsulfides in good yields. The mild
reaction conditions (green light, r.t.) tolerate various functional
groups and can be applied to the conjugation with thiol-
containing amino acids.
¨
J. Org. Chem., 2007, 72, 8298; ( f ) M. Erlandsson and M. Hallbrink,
Int. J. Pept. Res. Ther., 2005, 11, 261; (g) D. Kundu, S. Ahammed and
C. R. Brindabad, Green Chem., 2012, 14, 2024; (h) F. Effenberger and
H. Isak, Chem. Ber., 1989, 122, 545; (i) A. Luxen and L. Christiaens,
Tetrahedron Lett., 1982, 23, 3905.
13 B. V. Kopylova, L. V. Yashkina, I. I. Kandror and R. Kh. Freidlina,
Izv. Akad. Nauk SSSR, Ser. Khim., 1972, 947.
14 (a) M. P. Doyle, J. F. Dellaria, B. Siegfried and S. W. Bishop, J. Org.
Chem., 1977, 42, 3494; (b) F. W. Wassmundt and W. F. Kiesman,
J. Org. Chem., 1995, 60, 1713.
15 (a) D. Kosynkin, T. M. Bockman and J. K. Kochi, J. Am. Chem. Soc.,
1997, 119, 4846; (b) Y. Hirose, G. H. Wahl Jr. and H. Zollinger, Helv.
´
Chim. Acta, 1976, 59, 1427; (c) R. Pazo-Llorente, C. Bravo-Dıaz and
E. Gonzalez-Romero, Eur. J. Org. Chem., 2004, 3221.
16 (a) S. Z. Zard, Radical Reactions in Organic Synthesis, University Press,
Oxford, 2003, ch. 6; (b) K. Matyjaszewski, Macromolecules, 2012,
45, 4015; (c) P. Balczewski, A. Szadowiak and T. Bialas, Heteroat.
Chem., 2006, 17, 22; (d) D. D. Tanner, D. W. Reed and B. P. Setiloane,
J. Am. Chem. Soc., 1982, 104, 3917; (e) D. J. Hart, Science, 1984,
223, 883.
Notes and references
1 (a) M. B. Smith and J. March, March’s Advanced Organic Chemistry
Reactions, Mechanisms, and Structure, Wiley, Hoboken, 6th edn, 17 (a) G. Mugesh, W. W. du Mont and H. Sies, Chem. Rev., 2001,
2007, ch. 11 and 13; (b) M. Rueping and B. J. Nachtsheim, Beilstein
J. Org. Chem., 2010, 6, 6; (c) C. Torborg and M. Beller, Adv. Synth.
Catal., 2009, 351, 3027.
2 (a) Y. Xi, H. Yi and A. Lei, Org. Biomol. Chem., 2013, 11, 2387–2403;
(b) J. Xuan and W.-J. Xiao, Angew. Chem., Int. Ed., 2012, 51, 6828;
(c) F. Teply, Collect. Czech. Chem. Commun., 2011, 76, 859;
(d) K. Zeitler, Angew. Chem., Int. Ed., 2009, 48, 9785; (e) M. Fagnoni,
D. Dondi, D. Ravelli and A. Albini, Chem. Rev., 2007, 107, 2725;
101, 2125; (b) C. W. Nogueira, G. Zeni and J. B. T. Rocha, Chem. Rev.,
2004, 104, 6255.
18 Selected examples of S-aryl cystinates: (a) M. J. Drysdale and
J. F. Reinhard, Bioorg. Med. Chem. Lett., 1998, 8, 133;
(b) J. D. Brown, H. N. Khatri, P. J. Harrington, D. A. Johnston,
R. J. Topping, R. R. Dauer and G. K. Rowe, US Pat., 6765109, 2000;
(c) R. K. Dua, E. W. Taylor and R. S. Phillips, J. Am. Chem. Soc., 1993,
115, 1264; (d) S. W. Kaldor, V. J. Kalish, J. F. Davies II, B. V. Shetty,
J. E. Fritz, K. Appelt, J. A. Burgess, K. M. Campanale, N. Y. Chirgadze,
D. K. Clawson, B. A. Dressman, S. D. Hatch, D. A. Khalil, M. B. Kosa,
P. P. Lubbehusen, M. A. Muesing, A. K. Patick, S. H. Reich, K. S. Su
and J. H. Tatlock, J. Med. Chem., 1997, 40, 3979; (e) P. S. Herradura,
K. A. Pendola and R. K. Guy, Org. Lett., 2000, 2, 2019.
¨
( f ) N. S. Lewis, Science, 2007, 315, 798; (g) M. Oelgemoller, C. Jung
and J. Mattay, Pure Appl. Chem., 2007, 79, 1939.
3 (a) T. Sandmeyer, Ber. Dtsch. Chem. Ges., 1884, 17, 2650;
(b) I. P. Beletskaya and A. V. Cheprakov, Coord. Chem. Rev., 2004,
248, 2337.
4 M. Fagnoni and A. Albini, Acc. Chem. Res., 2005, 38, 713.
5 H. Cano-Yelo and A. Deronzier, J. Chem. Soc., Perkin Trans. 2, 1984,
1093.
19 (a) R. S. Glass, Top. Curr. Chem., 1999, 205, 1; (b) M. Fontecave,
S. Ollagnier-de-Choudens and E. Mulliez, Chem. Rev., 2003,
103, 2149.
¨
6 (a) D. P. Hari, P. Schroll and B. Konig, J. Am. Chem. Soc., 2012, 20 C. A. Kingsbury, J. Org. Chem., 1964, 29, 3262.
¨
134, 2958; (b) P. Schroll, D. P. Hari and B. Konig, ChemistryOpen, 21 (a) However, this NMR experiment does not exclude the operation of
¨
2012, 1, 130–133; (c) T. Hering, D. P. Hari and B. Konig, J. Org.
rapid short-chain mechanisms. Fluorescence spectra exhibited no
quenching of eosin Y emission at different concentrations of 4
which indicates the operation of triplet-eosin as reactive species. For
further details, see ESI†; (b) Y. Miyake, K. Nakajima and
Y. Nishibayashi, J. Am. Chem. Soc., 2012, 134, 3338; S. Zhu, A. Das,
L. Bui, H. Zhou, D. P. Curran and M. Rueping, J. Am. Chem. Soc.,
2013, 135, 1823; J. Zhao, W. Wu, J. Sun and S. Guo, Chem. Soc. Rev.,
2013, 42, DOI: 10.1039/C3CS35531D.
¨
Chem., 2012, 77, 10347; (d) D. P. Hari, T. Hering and B. Konig, Org.
Lett., 2012, 14, 5334; (e) D. Kalyani, K. B. McMurtrey, S. R. Neufeldt
and M. S. Sanford, J. Am. Chem. Soc., 2011, 133, 18566; ( f ) For a
timely review of arenediazonium salt chemistry, see: F. Mo, G. Dong,
Y. Zhang and J. Wang, Org. Biomol. Chem., 2013, 11, 1582.
7 (a) M. Neumann, S. Fu¨ldner, B. Konig and K. Zeitler, Angew. Chem.,
Int. Ed., 2011, 50, 951; (b) X. Wang, K. Maeda, A. Thomas,
¨
K. Takanabe, G. Xin, J. M. Carlsson, K. Domen and M. Antonietti, 22 (a) I. Szele and H. Zollinger, Helv. Chim. Acta, 1978, 61, 1721;
Nat. Mater., 2009, 8, 76; (c) J. Liu, S. Wen, Y. Hou, F. Zuo, G. J. O.
Beran and P. Feng, Angew. Chem., Int. Ed., 2013, 52, 3241.
(b) P. S. J. Canning, K. McCrudden, H. Maskill and B. Sexton,
J. Chem. Soc., Perkin Trans. 2, 1999, 2735.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 5507--5509 5509