10.1002/adsc.201700349
Advanced Synthesis & Catalysis
COMMUNICATION
In summary, we have demonstrated the productive
combination of main-group chemistry with multistep flow
techniques. This has led to the rapid processing of substrate
examples that are problematic under more traditional conditions.
Finally, we have demonstrated that the release of water as a
byproduct through a condensation reaction is compatible with a
B(C6F5)3 catalyst and thus a multistep flow process for the
formation of secondary amines was realized.
References:
[1] a) W. E. Piers, T. Chivers, Chem. Soc. Rev. 1997, 26, 345-354;
b) W. E. Piers, Adv. Organomet. Chem. 2005, 52, 1-77; c) T.
Robert, M. Oestreich, Angew. Chem. Int. Ed. 2013, 52, 5216-
5218.
[2] a) M. M. Hansmann, R. L. Melen, F. Rominger, A. S. K. Hashmi,
D. W. Stephan, J. Am. Chem. Soc. 2014, 136, 777-782; b) L. C.
Wilkins, B. A. R. Günther, M. Walther, J. R. Lawson, T. Wirth,
R. L. Melen, Angew. Chem. Int. Ed. 2016, 55, 11292-11295.
[3] a) Y. Ma, B. Wang, L. Zhang, Z. Hou, J. Am. Chem. Soc. 2016,
138, 3663-3666; b) Y. Kim, S. Chang, Angew. Chem. Int. Ed.
2016, 55, 218-222.
Experimental Section
General procedure for hydrosilylation of aldehydes
and ketones
A solution of triphenylsilane (1.0 equiv.) and aldehyde or ketone
(1.0 equiv.) (0.4 M, toluene) was prepared along with a separate
solution of tris(pentafluorophenyl)borane (0.008 M, 2 mol%,
toluene). 5 mL aliquots of each solution were combined at
matched flow-rates using a T-piece adapter via syringe pump
with a combined flow rate of 0.166 mLmin-1. The mixed reaction
stream then proceeded to a 5 mL tubular reaction coil where it
was heated to 60 °C and left to collect as waste for 36 minutes
(to allow the system to reach steady-state) before the output was
directed through a short plug of silica gel (to remove catalyst)
and collected in a flask for 12 minutes (2 mL). The solvent was
removed in vacuo followed by NMR spectroscopy to ascertain
the conversion.
[4] D. J. Parks, W. E. Piers, J. Am. Chem. Soc. 1996, 118, 9440-
9441.
[5] a) D. J. Parks, J. M. Blackwell, W. E. Piers, J. Org. Chem. 2000,
65, 3090-3098; b) M. Mewald, M. Oestreich, Chem. Eur. J.
2012, 18, 14079-14084.
[6] W. E. Piers, A. J. V. Marwitz, L. G. Mercier, Inorg. Chem. 2011,
50, 12252-12262.
[7] S. Rendler, M. Oestreich, Angew. Chem. Int. Ed. 2008, 47,
5997-6000.
[8] K. Sakata, H. Fujimoto, J. Org. Chem. 2013, 78, 12505-12512.
[9] M. Movsisyan, E. I. P. Delbeke, J. K. E. T. Berton, C.
Battilocchio, S. V. Ley, C. V. Stevens, Chem. Soc. Rev. 2016, 45,
4892-4928.
[10] a) K. Jähnisch, V. Hessel, H. Löwe, M. Baerns, Angew. Chem.
Int. Ed. 2004, 43, 406-446; b) R. L. Hartman, K. F. Jensen, Lab
on a Chip 2009, 9, 2495-2507; c) T. Noël, S. L. Buchwald,
Chem. Soc. Rev. 2011, 40, 5010-5029; d) J. C. Pastre, D. L.
Browne, S. V. Ley, Chem. Soc. Rev. 2013, 42, 8849-8869; e) T.
Noël, Y. Su, V. Hessel, Top. Organomet. Chem. 2016, 57, 1-41;
f) P. D. Morse, R. L. Beingessner, T. F. Jamison, Isr. J. Chem.
2017, 57, 218-227.
[11] S. V. Ley, Chem. Rec. 2012, 12, 378-390.
[12] J. Wegner, S. Ceylan, A. Kirschning, Adv. Synth. Catal. 2012,
354, 17-57.
[13] S. Roesner, S. L. Buchwald, Angew. Chem. Int. Ed. 2016, 55,
10463-10467.
[14] a) D. M. Roberge, B. Zimmermann, F. Rainone, M.
Gottsponer, M. Eyholzer, N. Kockmann, Organic Process
Research & Development 2008, 12, 905-910; b) C. E.
Brocklehurst, H. Lehmann, L. La Vecchia, Org. Proc. Res. Dev.
2011, 15, 1447-1453.
[15] a) R. V. Jones, L. Godorhazy, N. Varga, D. Szalay, L. Urge, F.
Darvas, J. Comb. Chem. 2006, 8, 110-116; b) M. Baumann, I.
R. Baxendale, S. V. Ley, N. Nikbin, C. D. Smith, J. P. Tierney,
Org. Biomol. Chem. 2008, 6, 1577-1586; c) C. Wiles, P. Watts,
Green Chem. 2012, 14, 38-54; d) K. S. Elvira, X. C. i Solvas, R.
C. R. Wootton, A. J. deMello, Nat. Chem. 2013, 5, 905-915; e)
B. Gutmann, D. Cantillo, C. O. Kappe, Angew. Chem. Int. Ed.
2015, 54, 6688-6728.
[16] a) D. J. Scott, T. R. Simmons, E. J. Lawrence, G. G. Wildgoose,
M. J. Fuchter, A. E. Ashley, ACS Catal. 2015, 5, 5540-5544; b)
V. Fasano, J. E. Radcliffe, M. J. Ingleson, ACS Catal. 2016, 6,
1793-1798; c) V. Fasano, M. J. Ingleson, Chem. Eur. J. 2017,
23, 2217-2224.
General procedure for tandem imine formation,
hydrosilylation and hydrolysis.
A
solution of the aldehyde (0.4 M, 1 equiv.) and
dimethylphenylsilane (0.48 M, 1.2 equiv., toluene), aniline (0.48
M, 1.2 equiv., toluene) and B(C6F5)3 (0.008 M, 2 mol%, toluene)
were loaded into the sample loop of stream A, B and C
respectively. The pumps were set to a flow rate of 0.17 mLmin-1
and the temperature of the heated coil set to 150 °C. Streams A
and B were set to inject, followed by stream C after 41 s. After
waiting for 7 mL (14 min) to be collected as waste (to allow the
system to reach steady-state), the output was directed through a
plug of silica gel (to remove the catalyst) and the solution
collected for 8 minutes (4 mL). The solvent was removed under
reduced pressure and mesitylene (74 μL, 0.064 g, 0.53 mmol)
added as an internal standard. NMR conversions were
1
determined by H NMR spectroscopy. Isolated products were
obtained after column chromatography on silica gel using an
ethyl acetate/petroleum ether eluent (1:4 for 3a, 1:9 for 3d) and
drying in vacuo.
Acknowledgement:
We thank Cardiff University for generous support, The Royal
Society for
a Research Grant (D.L.B., award number
RG150376), the ERASMUS+ program (support of S.B. and L.F-
B.) and Cambridge Reactor Design for a studentship to J.L.H.
We thank the EPSRC UK National Mass Spectrometry Facility
at Swansea University for mass spectrometry measurements.
Notes and references
Corresponding Authors:
Dr Rebecca L. Melen:
E-mail: MelenR@cardiff.ac.uk
Dr Duncan L. Browne:
[17] a) J. M. Blackwell, E. R. Sonmor, T. Scoccitti, W. E. Piers, Org.
Lett. 2000, 2, 3921-3923; b) D. Chen, V. Leich, F. Pan, J.
Klankermayer, Chem. Eur. J. 2012, 18, 5184-5187.
E-mail: DLBrowne@cardiff.ac.uk
This article is protected by copyright. All rights reserved.