Journal of the American Chemical Society
Article
Car
́
denas, D. J. Chem. Soc. Rev. 2009, 38, 1598. (c) Giovannini, R.;
Janne, P. A.; Lee, J. C.; Tracy, S.; Greulich, H.; Gabriel, S.; Herman, P.;
̈
Studemann, T.; Devasagayaraj, A.; Dussin, G.; Knochel, P. J. Org.
Kaye, F. J.; Lindeman, N.; Boggon, T. J.; Naoki, K.; Sasaki, H.; Fujii,
Y.; Eck, M. J.; Sellers, W. R.; Johnson, B. E.; Meyerson, M. Science
2004, 304, 1497. (c) For dextromoramide, see: Lasagna, L.; De
Kornfeld, T.; Safar, P. J. Chron. Dis. 1958, 8, 689.
̈
Chem. 1999, 64, 3544. (d) Piber, M.; Jensen, A. E.; Rottlander, M.;
̈
Knochel, P. Org. Lett. 1999, 1, 1323. (e) Jensen, A. E.; Knochel, P. J.
Org. Chem. 2002, 67, 79.
(31) Yonova, I. M.; Jarvo, E. R. Unpublished results.
(14) (a) Campos, K. R.; Klapars, A.; Waldman, J. H.; Dromer, P. G.;
Chen, C.-y. J. Am. Chem. Soc. 2006, 128, 3538. (b) Beng, T. K.;
Gawley, R. E. Org. Lett. 2011, 13, 394. (c) For a review of general
asymmetric cross-coupling strategies, see: Swift, E. C.; Jarvo, E. R.
Tetrahedron 2013, DOI: 10.1016/j.tet.2013.05.001 (published online
May 6, 2013).
(32) Smith, F. T.; Clark, C. R. Prodrugs and Drug Latentiation. In
Organic Medicinal and Pharmaceutical Chemistry, 11th ed.; Block, J. H.,
Beale, J. M., Jr., Eds.; Baltimore, 2004; pp 142.
(33) Malhotra, B.; Gandelman, K.; Sachse, R.; Wood, N.; Michel, M.
C. Curr. Med. Chem. 2009, 16, 4481.
(34) Nagpal, S.; Chandraratna, R. A. S. Curr. Pharm. Design 1996, 2,
295.
(15) (a) Lundin, P. M.; Esquivias, J.; Fu, G. C. Angew. Chem., Int. Ed.
2009, 121, 160. (b) Fischer, C.; Fu, G. C. J. Am. Chem. Soc. 2005, 127,
4594. (c) Smith, S. W.; Fu, G. C. J. Am. Chem. Soc. 2008, 130, 12645.
(d) Arp, F. O.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 10482.
(e) Oelke, A. J.; Sun, J.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 2966.
(f) Choi, J.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 9102. (g) Binder, J.
T.; Cordier, C. J.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 17003.
(16) For lead references on general directing group strategies, see:
(a) Rousseau, G.; Breit, B. Angew. Chem., Int. Ed. 2011, 50, 2450.
(b) Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93, 1307.
(17) For representative examples of the use of directing group in
(35) Nagpal, S.; Thatcher, S. M.; Patel, S.; Friant, S.; Malhotra, M.;
Shafer, J.; Krasinski, G.; Asano, A. T.; Teng, M.; Duvic, M.;
Chandraratna, R. A. S. Cell Growth Differ. 1996, 7, 1783.
(36) Schadendorf, D.; Worm, M.; Jurgovsky, K.; Dippel, E.; Michel,
S.; Charpentier, B.; Bernardon, J. M.; Reichert, U.; Czarnetzki, B. M.
Int. J. Oncol. 1994, 5, 1325.
(37) Fisher, G. J.; Voorhees, J. J. FASEB J. 1996, 10, 1002.
́
(38) Graupner, G.; Malle, G.; Maignan, J.; Lang, G.; Prunieras, M.;
Pfahl, M. Biochem. Biophys. Res. Commun. 1991, 179, 1554 See also ref
7c.
(39) Frohn, H.-J.; Adonin, N. Y.; Bardin, V. V.; Starichenko, V. F. Z.
Anorg. Allg. Chem. 2002, 628, 2827.
(40) See SI for full details. CCDC-940966 contains the supplemental
crystallographic data for this structure. These data can be obtained free
of charge from the Cambridge Crystallographic Data Center via www.
nickel catalysis, see: (a) Devasagayaraj, A.; Studemann, T.; Knochel, P.
̈
Angew. Chem., Int. Ed. Engl. 1995, 34, 2723. (b) Didiuk, M. T.;
Morken, J. P.; Hoveyda, A. H. Tetrahedron 1998, 54, 1117. (c) Wilsily,
A.; Tramutola, F.; Owston, N. A.; Fu, G. C. J. Am. Chem. Soc. 2012,
134, 5794.
(18) Srogl, J.; Liu, W.; Marshall, D.; Liebeskind, L. S. J. Am. Chem.
Soc. 1999, 121, 9449.
(41) For assignment of absolute configuration of alcohols, see:
(a) Hoye, T. R.; Jeffrey, C. S.; Shao, F. Nat. Protoc. 2007, 2, 2451.
(b) Dale, J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. 1969, 34, 2543.
(c) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512.
(d) Ohtani, I.; Kusumi, T.; Ishitsuka, M. O.; Kakisawa, H. Tetrahedron
Lett. 1989, 30, 3147. (e) Ohtani, I.; Kusumi, T.; Kashman, Y.;
Kakisawa, H. J. Org. Chem. 1991, 56, 1296. (f) Ohtani, I.; Kusumi, T.;
Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092.
(42) (a) Li, J. J.; Limberakis, C.; Pflum, D. A. Oxidation. Modern
Organic Synthesis in the Laboratory: A Collection of Standard
Experimental Procedures; Oxford University Press: New York, 2007;
pp 55. (b) Wipf, P.; Xu, W. J. Org. Chem. 1996, 61, 6556.
(43) Kose, M. J. Photochem. Photobiol., A 2004, 165, 97.
(44) Swanson, D. M.; Dubin, A. E.; Shah, C.; Nasser, N.; Chang, L.;
Dax, S. L.; Jetter, M.; Breitenbucher, J. G.; Liu, C.; Mazur, C.; Lord, B.;
Gonzales, L.; Hoey, K.; Rizzolio, M.; Bogenstaetter, M.; Codd, E. E.;
Lee, D. H.; Zhang, S.-P.; Chaplan, S. R.; Carruthers, N. I. J. Med. Chem.
2005, 48, 1857.
(19) Taylor, B. L. H.; Harris, M. R.; Jarvo, E. R. Angew. Chem., Int. Ed.
2012, 51, 7790.
(20) For acceleration of oxidative addition by pendant thiols during
cross-coupling of thioacetals, see: Ni, Z.-J.; Mei, N.-W.; Shi, X.; Tzeng,
Y.-L.; Wang, M. C.; Luh, T.-Y. J. Org. Chem. 1991, 56, 4035.
(21) For a discussion, see ref 18.
(22) For es, see: Denmark, S. E.; Vogler, T. Chem. Eur. J. 2009, 15,
11737.
(23) Stayshich, R. M.; Meyer, T. Y. J. Polym. Sci., Part A: Polym.
Chem. 2008, 46, 4704.
(24) The stereochemical course of the reaction was determined by
comparison to the reported optical rotations of the intermediate
alcohol and cross-coupling product. See SI for details.
(25) (a) Lee, A. S.; Norman, A. W.; Okamura, W. H. J. Org. Chem.
1992, 57, 3846. (b) Li, J. J.; Limberakis, C.; Pflum, D. A. Reductions.
Modern Organic Synthesis in the Laboratory: A Collection of Standard
Experimental Procedures; Oxford University Press: New York, 2007; pp
96. (c) Dakin, L. A.; Panek, J. S. Org. Lett. 2003, 5, 3995.
(26) For enantioselective arylation of alkyl aldehydes, see: Wu, K.-H.;
Zhou, S.; Chen, C.-A.; Yang, M.-C.; Chiang, R.-T.; Chen, C.-R.; Gau,
H.-M. Chem. Commun. 2011, 47, 11668.
(27) For enantioselective arylation of aryl aldehydes, see: (a) Bolm,
C.; Rudolph, J. J. Am. Chem. Soc. 2002, 124, 14850. (b) Braga, A. L.;
Paixao, M. W.; Westermann, B.; Schneider, P. H.; Wessjohann, L. A. J.
̃
Org. Chem. 2008, 73, 2879.
(28) Absolute configuration of known alcohols was assigned by
optical rotation (see SI). Absolute configuration of new alcohols was
assigned as follows: (a) Alcohols prepared by the CBS reduction were
assigned on the basis of the predictive model described in Corey, E. J.;
Helal, C. J. Angew. Chem., Int. Ed. 1998, 37, 1986. (b) Singly benzylic
alcohols were assigned by analogy to similar substrates prepared by the
same method as in ref 26. (c) Benzydryl alcohols were assigned by
predictive model described in ref 27b.
(29) (a) Wagner, A. J.; David, J. G.; Rychnovsky, S. D. Org. Lett.
2011, 13, 4470. (b) Wagner, A. J.; Rychnovsky, S. D. J. Org. Chem.
2013, 78, 4594.
(30) (a) For linezolid, see: Brickner, S. J.; Hutchinson, D. K.;
Barbachyn, M. R.; Manninen, P. R.; Ulanowicz, D. A.; Garmon, S. A.;
Graga, K. C.; Hendges, S. K.; Toops, D. S.; Ford, C. W.; Zurenko, G.
E. J. Med. Chem. 1996, 39, 673. (b) For gefitinib, see: Paez, J. G.;
H
dx.doi.org/10.1021/ja4034999 | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX