Scheme 1. Fe(II)-Oxidative/Addition Dearomatization and the Fe(III)-Catalyzed Oxidative Cross-Coupling Reactions
many biologically active natural products (as exemplified
in Scheme 1).12 Several synthetic strategies for the prepara-
tion of specific compounds have been developed, as well as
complementary methods based on multistep syntheses to
assemble active dihydrobenzofurans.13,14
Here we present an unpresented efficient catalytic iron-
based phenolꢀalkene oxidative cross-coupling reaction,
which provides direct entry to polysubstituted 2,3-dihydro-
benzofurans. Our regio-, chemo-, and stereoselective method
enables direct coupling of phenols with styrene derivatives in a
formal [3 þ 2] cycloaddition manner (Scheme 1) and thereby
provides a new strategy for the preparation of the pharma-
cologically important 2,3-dihydrobenzofuran motif.12,15
Following strategies similar to those previously em-
ployed for the iron-based cross dehydrogenative coupling
(CDC) reactions16,17 of phenols with β-ketoesters and
R-substituted-β-ketoesters,18,19 we studied the oxidative
Table 1. Optimization Study for the Oxidative Coupling Reac-
tion between 2-Naphthol 4 and Styrene 5a,b
C
7a
8a
9
entry
(mol/L)
[Fe]
FeCl3
(%)
(%)
(%)
c
1
0.5
ꢀ
ꢀ
ꢀ
2
0.5
FeCl2
27
[15]d
ꢀ
28
[15]d
ꢀ
ꢀ
3
0.5
FeCl3 (H2O)6
[40]d
22
3
4
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.5
FeCl2
5
FeCl2 (H2O)4
ꢀ
ꢀ
[25]d
45
3
6
FeCl3
ꢀ
ꢀ
7
FeCl3 (H2O)6
ꢀ
ꢀ
71
3
8e
9f
10g
11h
12i
13
FeCl3 (H2O)6
ꢀ
ꢀ
65
3
FeCl3 (H2O)6
ꢀ
ꢀ
60
3
FeCl3 (H2O)6
ꢀ
ꢀ
42
3
FeCl3
ꢀ
ꢀ
[43]d
[35]d
ꢀ
0.05
0.05
FeCl3
ꢀ
ꢀ
j
no metal
ꢀ
ꢀ
a Conditions: 4 (1 mmol), 5 (0.5 mmol), [Fe] (20 mol %), DTBP
(2 mmol), DCE, 80 °C, 1 h. b Isolated yield. c Only BINOL was formed.
d HPLC yield is given in square brackets. e Similar conditions except 4
(13) (a) Dohi, T.; Hu, Y.; Kamitanaka, T.; Kita, Y. Tetrahedron
2012, 68, 8424. (b) Chen, D. Y.; Youn, S. W. Chem.;Eur. J. 2012, 18,
9452. (c) Wang, D.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 5767. (d)
Wang, X.; Lu, Y.; Dai, H.-X.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132,
12203. (e) Rousseaux, S.; Davi, M.; Sofack-Kreutzer, J.; Pierre, C.;
Kefalidis, C. E.; Clot, E.; Fagnou, K.; Baudoin, O. J. Am. Chem. Soc.
2010, 132, 10706. (f) Lafrance, M.; Gorelsky, S. I.; Fagnou, K. J. Am.
Chem. Soc. 2007, 129, 14570. (g) Zhang, H.; Ferreira, E. M.; Stoltz,
B. M. Angew. Chem., Int. Ed. 2004, 43, 6144.
(0.5 mmol), 5 (1 mmol). f FeCl3 (H2O)6 (10 mol %) was used. g The
3
reaction was performed at 60 °C. h Solvent-free conditions; 4 (0.5 mmol),
5 (1 mL), FeCl3 (20 mol %), DTBP (1 mmol), 80 °C. i 1,10-Phenanthroline
(10 mol %) was used as an additive in the reaction mixture. j No reaction.
(14) Snyder, S. A.; Gollner, A.; Chiriac, M. I. Nature 2011, 474, 461.
(15) Sun, A. Y.; Simonyi, A.; Sun, G. Y. Free Radical Biol. Med.
2002, 32, 314.
(16) (a) Direct, C. Chem. Rev. 2011, 111, 1293. (b) Liu, C.; Zhang, H.;
Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780. (c) Yeung, C. S.; Dong,
V. M. Chem. Rev. 2011, 111, 1215. (d) Ashenhurst, J. A. Chem. Soc. Rev.
2010, 39, 540.
(17) (a) DeMartino, M. P.; Chen, K.; Baran, P. S. J. Am. Chem. Soc.
2008, 130, 11546. (b) Richter, J. M.; Whitefield, B. W.; Maimone, T. J.;
Lin, D. W.; Castroviejo, M. P.; Baran, P. S. J. Am. Chem. Soc. 2007, 129,
12857. (c) Baran, P. S.; Richter, J. M. J. Am. Chem. Soc. 2004, 126, 7450.
(d) Li, C.-J. Acc. Chem. Res. 2008, 42, 335. (e) Li, Z.; Li, C.-J. J. Am.
Chem. Soc. 2004, 126, 11810.
(18) (a) Guo, X.; Yu, R.; Li, H.; Li, Z. J. Am. Chem. Soc. 2009, 131,
17387. (b) Parnes, R.; Kshirsagar, U. A.; Werbeloff, A.; Regev, C.;
Pappo, D. Org. Lett. 2012, 14, 3324.
coupling reaction of 2-naphthol (4, 0.5 mmol) and styrene
(5, 1 mmol), with FeCl3 (20 mol %) as the catalyst and
tBuOOtBu (DTBP, 2mmol) astheoxidant inDCE(0.5 M)
at 80 °C (Table 1, entry 1). Unfortunately, under these
conditions only BINOL 6a was obtained. However, un-
expectedly, with FeCl2 (20 mol %) as the catalyst (entry 2),
compound 6a, after being formed, underwent a rapid
oxidative/addition dearomatization20 reaction with styrene to
give a mixture of the constitutional isomers 7a and 8a
(Scheme 1). Although compound 7a was formed as a single
stereoisomer (27% yield),21 compound 8a was isolated
as a mixture of diastereoisomers (28%, 15-epi, dr = 5:1).
The structures of 7a and 8a, as well as other key products in
(19) Kshirsagar, U. A.; Parnes, R.; Goldshtein, H.; Ofir, R.; Zarivach,
R.; Pappo, D. Chem.;Eur. J. 2013, DOI:10.1002/chem.201300389.
(20) (a) Oguma, T.; Katsuki, T. J. Am. Chem. Soc. 2012, 134, 20017.
(b) Rudolph, A.; Bos, P. H.; Meetsma, A.; Minnaard, A. J.; Feringa,
B. L. Angew. Chem., Int. Ed. 2011, 50, 5834. (c) Zhuo, C.-X.; Zhang, W.;
You, S.-L. Angew. Chem., Int. Ed. 2012, 51, 12662.
(21) NOESY experiments failed to provide the data that will enable
the determination of the relative configuration of compound 10a.
B
Org. Lett., Vol. XX, No. XX, XXXX