Silver-Mediated Fluorination of 5-Iodotriazoles
Scheme 3. Proposed mechanism.
K. Müller), World Scientific, London, 2012, pp. 141–174; d) T.
Hiyama, H. Yamamoto, Organofluorine Compounds (Ed.: H.
Yamamoto), Springer, Berlin, 2000, pp. 137–182; e) P. Kirsch,
Modern Fluoroorganic Chemistry, Wiley-VCH, Weinheim, 2013,
pp. 299–350.
a) R. Berger, G. Resnati, P. Metrangolo, E. Weber, J. Hulliger,
Chem. Soc. Rev. 2011, 40, 3496–3508; b) C. Botta, E. Cariati,
G. Cavallo, V. Dichiarante, A. Forni, P. Metrangolo, T. Pilati,
G. Resnati, S. Righetto, G. Terraneo, E. Tordin, J. Mater.
Chem. C 2014, 2, 5275–5279.
a) W. Hong, “Agricultural Products Based on Fluorinated Het-
erocyclic Compounds”, in Fluorinated Heterocyclic Com-
pounds: Synthesis Chemistry, and Applications (Ed.: V. A. Pe-
trov), John Wiley & Sons, Inc., Hoboken, NJ, 2009, pp. 397–
418; b) P. Jeschke, ChemBioChem 2004, 5, 570–589.
a) V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless,
Angew. Chem. Int. Ed. 2002, 41, 2596–2599; Angew. Chem.
2002, 114, 2708–2711; b) J. E. Hein, V. V. Fokin, Chem. Soc.
Rev. 2010, 39, 1302–1315; c) J. E. Moses, A. D. Moorhouse,
Chem. Soc. Rev. 2007, 36, 1249–1262.
a) C. Spiteri, J. E. Moses, Angew. Chem. Int. Ed. 2010, 49, 31–
33; Angew. Chem. 2010, 122, 33–36; b) L. Li, G. Zhang, A.
Zhu, L. Zhang, J. Org. Chem. 2008, 73, 3630–3633; c) W. S.
Brotherton, R. J. Clark, L. Zhu, J. Org. Chem. 2012, 77, 6443–
6455; d) R. Yan, K. Sander, E. Galante, V. Rajkumar, A. Badar,
M. Robson, E. El-Emir, M. F. Lythgoe, R. B. Pedley, E. Ar-
stad, J. Am. Chem. Soc. 2013, 135, 703–709; e) D. Goyard, J. P.
Praly, S. Vidal, Carbohydr. Res. 2012, 362, 79–83; f) L. J. Li,
Y. Y. Li, R. Li, A. L. Zhu, G. S. Zhang, Aust. J. Chem. 2011,
64, 1383–1389; g) J. E. Hein, J. C. Tripp, L. B. Krasnova, K. B.
Sharpless, V. V. Fokin, Angew. Chem. Int. Ed. 2009, 48, 8018–
8021; Angew. Chem. 2009, 121, 8162–8165; h) R. Yan, E. El-
Emir, V. Rajkumar, M. Robson, A. P. Jathoul, R. B. Pedley, E.
Arstad, Angew. Chem. Int. Ed. 2011, 50, 6793–6795; Angew.
Chem. 2011, 123, 6925–6927.
DMF and MeCN [Scheme 2, equations (3) and (4)]: 3a was
obtained as the major product in 48% and 41% yield, with
32% and 25% deuterated 3a, respectively. Those data sug-
gest that adventitious water might be another source of the
protonated and dehalogenated triazole. Hence, the rigorous
exclusion of water is essential for high yields.
As no desired product was obtained at all with KF or
CsF in the absence of AgF, the SNAr mechanism was ruled
out as a possible pathway.[11] On the basis of the mechan-
istic studies mentioned above and previous reports,[11,17c] we
propose the mechanism of our reaction as shown in
Scheme 3. Oxidative addition of silver to the C–I bond and
the formation of a bimetallic aryl silver intermediate are the
first steps. The bimetallic aryl silver complex subsequently
undergoes reductive elimination to afford the desired 5-
fluorotriazoles.
[2]
[3]
[4]
[5]
Conclusions
In summary, we have developed a powerful method for
the direct fluorination of 5-iodotriazoles with AgF under
mild conditions. This method shows good functional group
tolerance and provides a complementary way to give the
corresponding 5-fluorotriazoles in excellent yields. 5-Iodo-
triazoles without aromatic groups at the 4-position or ali-
phatic substituents at the N1 position can be smoothly con-
verted to the corresponding 5-fluorotriazoles. Mechanistic
studies indicate that this reaction might proceed through a
bimetallic AgII intermediate. Further investigations to
broaden the substrate scope and elucidate the detailed
mechanism are underway.
[6]
[7]
[8]
[9]
F. A. Dan, Z. A. Jian, S. Cao, J. Fluorine Chem. 2013, 156,
170–176.
J. Huang, S. J. F. Macdonald, J. P. A. Harrity, Chem. Commun.
2009, 436–438.
Y. Zhou, T. Lecourt, L. Micouin, Angew. Chem. Int. Ed. 2010,
49, 2607–2610; Angew. Chem. 2010, 122, 2661–2664.
a) X. Zhang, R. P. Hsung, H. Li, Chem. Commun. 2007, 2420–
2422; b) L. J. Li, Y. Q. Zhang, Y. Zhang, A.-L. Zhu, G.-S.
Zhang, Chin. Chem. Lett. 2014, 25, 1161–1164; c) B. Gerard,
J. Ryan, A. B. Beeler, J. A. Porco, Tetrahedron 2006, 62, 6405–
6411; d) D. V. Partyka, L. Gao, T. S. Teets, J. B. Updegraff, N.
Deligonul, T. G. Gray, Organometallics 2009, 28, 6171–6182; e)
A. Krasin´ski, V. V. Fokin, K. B. Sharpless, Org. Lett. 2004, 6,
1237–1240; f) S. Chuprakov, N. Chernyak, A. S. Dudnik, V.
Gevorgyan, Org. Lett. 2007, 9, 2333–2336; g) H. Zhang, H.
Tanimoto, T. Morimoto, Y. Nishiyama, K. Kakiuchi, Org.
Lett. 2013, 15, 5222–5225; h) J. Deng, Y. M. Wu, Q. Y. Chen,
Synthesis 2005, 2730–2738; i) J. Thibonnet, Y. Carcenac, F. D.
Quillot, M. Abarbri, A. Duchêne, Synthesis 2013, 45, 633–638.
Only one report of fluorinated triazoles was found using Scif-
inder.
Experimental Section
General Procedures for the Synthesis of 5-Fluorotriazoles: In an
argon-filled glove box, AgF (126.9 mg, 1.0 mmol, 5.0 equiv.) and
5-iodotriazoles (0.2 mmol, 1.0 equiv.) were added to a 25 mL oven-
dried glassware containing a stirring bar. Then, TMEDA (15.0 μL,
0.5 equiv.) and anhydrous toluene (2.0 mL) were added. Finally, the
glassware was heated at 120 °C in oil bath.
Acknowledgments
This work was supported by the National Natural Science Founda-
tion of China (Grant No. 21371017).
[10]
[11]
[12]
B. T. Worrell, J. E. Hein, V. V. Fokin, Angew. Chem. Int. Ed.
2012, 51, 11791–11794; Angew. Chem. 2012, 124, 11961–11964.
a) M. G. Campbell, T. Ritter, Chem. Rev. 2015, 115, 612–633;
b) X. Yang, T. Wu, R. J. Phipps, F. D. Toste, Chem. Rev. 2015,
115, 826–870; c) C. Hollingworth, V. Gouverneur, Chem. Com-
[1] a) S. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem.
Soc. Rev. 2008, 37, 320–330; b) K. Müller, C. Faeh, F. Dieder-
ich, Science 2007, 317, 1881–1886; c) S. Swallow, Fluorine in
Pharmaceutical and Medicinal Chemistry (Eds.: V. Gouverneur,
Eur. J. Org. Chem. 2015, 4114–4118
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
4117