ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Synthesis and Properties of
BF2‑3,30-Dimethyldiarylazadipyrromethene
Near-Infrared Fluorophores
Dan Wu and Donal F. O’Shea*
School of Chemistry and Chemical Biology, University College Dublin, Belfield,
Dublin 4, Ireland
Received May 21, 2013
ABSTRACT
The first synthesis of both organic and aqueous soluble BF2 chelated 3,30-dimethyl-5,50-diarylazadipyrromethenes has been achieved. The
fluorophores are emissive in organic and aqueous solvents with high quantum yields in the key biological near-infrared (NIR) spectral region of
675ꢀ700 nm. Following efficient cellular uptake from aqueous media the fluorophore can be readily visualized with confocal microscopy.
The ability to visualize in vitro and in vivo using molecular
near-infrared (NIR) fluorescence is a rapidly evolving rese-
arch field. Opportunities exist for the development of new
fluorescent platforms with strong absorption and emissions
in the low energy spectral regions (650ꢀ800 nm) that most
readily pass through biological tissues. Potential biomedical
uses for such techniques range from clinical diagnosis of
disease states to real time imaging for intraoperative guided
surgery.1 Our recent interest in this field stems from our
development of boron chelates of tetraarylazadipyrro-
methenes 3 (Scheme 1).2 These fluorophores exhibit NIR
absorption and emissions and have high fluorescence
quantum yields (0.3ꢀ0.4) and excellent photostability.3
Their synthesis derives from tetraarylazadipyrromethenes
2 which were first reported in 1943 as unexpected, deep blue,
colored products obtained from treatment of diaryl-γ-nitro
ketones 1 with ammonium formate (Scheme 1).4 In more
recent times we have developed new and optimized routes to
these compounds and specifically explored their boron
chelated derivatives as NIR fluorophores 3 (Scheme 1).5
Their advantageous photophysical properties have encour-
aged investigations for potential applications such as fluoro-
chromes,6 sensors/energy transfer cassettes,7 and donor/
acceptor conjugates for solar cells.8 Despite their growing
importance, the 3,30,5,50-tetraaryl substituted derivatives
(4) (a) Rogers, M. A. T. Nature 1943, 151, 504. (b) Rogers, M. A. T.
J. Chem. Soc. 1943, 590–596.
(1) (a) Escobedo, J. O.; Rusin, O.; Lim, S.; Strongin, R. M. Curr.
Opin. Chem. Biol. 2010, 14, 64–70. (b) Nguyen, Q. T.; Olson, E.;
Aguilera, T. A.; Jiamg, T.; Scadeng, M.; Ellies, L. G.; Tsien, R. Y. Proc.
Natl. Acad. Sci. U.S.A. 2010, 107, 4317–4322. (c) Razansky, D.; Distel,
M.; Vinegoni, C.; Ma, R.; Perrimon, N.; Koster, R. W.; Ntziachristos,
V. Nat. Photonics 2009, 3, 412–417. (d) Weissleder, R.; Pittet, M. J.
Nature 2008, 452, 580–589.
(5) (a) Gorman, A.; Killoran, J.; O’Shea, C.; Kenna, T.; Gallagher,
W. M.; O’Shea, D. F. J. Am. Chem. Soc. 2004, 126, 10619–10631. (b)
Grossi, M.; Palma, A.; McDonnell, S. O.; Hall, M. J.; Rai, D. K.;
Muldoon, J.; O’Shea, D. F. J. Org. Chem. 2012, 77, 9304–9312.
(6) Tasior, M.; O’Shea, D. F. Bioconj. Chem. 2010, 7, 1130–1133.
€
(7) (a) Jokic, T.; Borisov, S. M.; Saf, R.; Nielsen, D. A.; Kuhl, M.;
(2) (a) Palma, A.; Alvarez, L. A.; Scholz, D.; Frimannsson, D. O.;
Grossi, M.; Quinn, S. J.; O’Shea, D. F. J. Am. Chem. Soc. 2011, 133,
19618–19621. (b) Murtagh, J.; Frimannsson, D. O.; O’Shea, D. F. Org.
Lett. 2009, 11, 5386–5389. (c) Palma, A.; Tasior, M.; Frimannsson,
D. O.; Vu, T. T.; Meallet-Renault, R.; O’Shea, D. F. Org. Lett. 2009, 11,
3638–3641.
(3) (a) Batat, P.; Cantuel, M.; Jonusauskas, G.; Scarpantonio, L.;
Palma, A.; O’Shea, D. F.; McClenaghan, N. D. J. Phys. Chem. A 2011,
115, 14034–14039.
Klimant, I. Anal. Chem. 2012, 84, 6723–6730. (b) Loudet, A.; Bandichhor,
R.Wu, L.; Burgess, K. Tetrahedron 2008, 3642–3654. (c) Gao, L.;
Deligonul, N.; Gray, T. G. Inorg. Chem. 2012, 51, 7682–7688.
(8) (a) Flavin, K.; Lawrence, K.; Bartelmess, J.; Tasior, M.; Navio,
C.; Bittencourt, C.; O’Shea, D. F.; Guldi, D. M.; Giordani, S. ACS Nano
2011, 5, 1198–1206. (b) Leblebici, S. Y.; Catane, L.; Barclay, D. E.;
Olson, T.; Chen, T. L.; Ma, B. ACS Appl. Mater. Interfaces 2011, 3,
4469–4474. (c) Amin, A. N.; El-Khouly, E.; Subbaiyan, N. K.; Zandler,
M. E.; Fukuzumi, S.; D’Souza, F. Chem. Commun. 2012, 48, 206–208.
ꢀ
r
10.1021/ol401434c
XXXX American Chemical Society