for superacidic trifluoromethanesulfonic acid-induced cyclia-
cyalkylation of arenes,5 competitive Friedel-Crafts alkylation
and/or acylation led to mixtures of 1-indanones, R,â-unsaturated
aromatic ketones, and 3-aryl carboxylic acids, with the latter
as major products in most cases.7 Furthermore, Friedel-Crafts
alkylation of 3-aryl R,â-unsaturated carboxylic acids affords 3,3-
diaryl carboxylic acids, which will produce different structural
isomers during the subsequent cyclization when the two aryl
groups are different. Because the acyl chloride predominantly
undergoes a Friedel-Crafts acylation rather than a Friedel-
Crafts alkylation, to avoid competitive intermolecular Friedel-
Crafts alkylation at the first step, active acyl chlorides should
be more suitable reactants instead of the corresponding acids.
However, although some 1-indanones could be prepared in good
yields by the reaction of substituted benzenes and R,â-
unsaturated acyl chloride under the catalysis of AlCl3 or
methanesulfonic acid, the substituted benzenes are limited to
benzene and electron-rich substituted benzenes.8
Microwave-Assisted One-Pot Synthesis of
1-Indanones from Arenes and r,â-Unsaturated
Acyl Chlorides
Wei Yin,† Yuan Ma,*,† Jiaxi Xu,‡ and Yufen Zhao†
Key Laboratory of Bioorganic Phosphorus Chemistry and
Chemical Biology, Ministry of Education, Department of
Chemistry, Tsinghua UniVersity, Beijing 100084, People’s
Republic of China, and Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry and Molecular Engineering, Peking
UniVersity, Beijing 100871, People’s Republic of China
ReceiVed January 5, 2006
Microwave irradiation has been widely applied in organic
synthesis recently and achieved great success for many reac-
tions,9 including Friedel-Crafts acylations10 and Nazarov
cyclizations,11 with high efficiency and yields. Herein, we
present our results on the microwave-assisted one-pot synthesis
of 1-indanones from substituted benzenes and R,â-unsaturated
acyl chlorides in good yields.
First, we used identical conditions as reported by Koelsch et
al. with crotonic acid and benzene as starting materials.12
However, we failed to achieve the literature’s yield (81.5%; a
very low yield was obtained) in repeating the reaction several
times. Instead, crotonic acid was recovered in all cases. To
improve reactivity, we used more active crotonoyl chloride
instead of crotonic acid and obtained a mixture of 3-methyl-1-
A series of 1-indanones were synthesized in good yields via
tandem Friedel-Crafts acylation and Nazarov cyclization of
arenes and R,â-unsaturated acyl chlorides in the presence
of aluminum chloride under microwave irradiation.
1-Indanones are important synthetic intermediates for phar-
maceuticals and biologically active compounds1 and ligands of
olefin polymerization catalysts.2 There are numerous methods
available for the preparation of 1-indanones.3 The intramolecular
Friedel-Crafts acylation of 3-aryl carboxylic acids or the
corresponding acyl chlorides catalyzed by Lewis acids and/or
protic acids4 has been one of the oldest and most widely used
approaches because of its efficiency and convenience. The
educts were prepared generally from arenes and R,â-unsaturated
carboxylic acids. Actually, the intermolecular Friedel-Crafts
reaction of arenes and R,â-unsaturated carboxylic acids has also
been attempted to prepare 1-indanones.1d,5,6 However, except
(5) Surya Prakash, G. K.; Yan, P.; Toeroek, B.; Olah, G. A. Catal. Lett.
2003, 87, 109-112.
(6) Klumpp, D. A.; Rendy, R.; Zhang, Y.; Gomez, A.; McElrea, A. Org.
Lett. 2004, 6, 1789-1792.
(7) (a) Johnston, K. M.; Shotter, R. G. Tetrahedron 1974, 30, 4059-
4064. (b) Shotter, R. G.; Johnston, K. M.; Jones, J. F. Tetrahedron 1978,
34, 741-746.
(8) (a) Ready, T. E.; Chien, J. C. W.; Rausch, M. D. J. Organomet. Chem.
1999, 583, 11-27. (b) Ranu, B. C.; Jana, U. J. Org. Chem. 1999, 64, 6380-
6386. (c) Camps, F.; Coll, J.; Colomina, O.; Messeguer, A. Anorg. Chem.
Org. Chem. 1984, 39B, 1801-1805. (d) Boberg, F.; Deters, K.; Schulz, J.;
Torges, K. Phosphorus, Sulfur Silicon Relat. Elem. 1994, 91, 69-80. (e)
Jefferson, A.; Wangchareontrakul, S. Aust. J. Chem. 1985, 38, 605-614.
(f) Bhattacharyya, S.; Basu, B.; Mukherjee, D. Tetrahedron 1983, 39, 4221-
4224. (g) Dupin, J. F. E.; Chenault, J. Heterocycles 1983, 20, 2401-2404.
(h) Miyamoto, T. K.; Tsutsui, M.; Chen, L. Chem. Lett. 1981, 729-730.
(i) Conover, L. H. J. Am. Chem. Soc. 1953, 75, 4017-1020. (j) Colonge,
J.; Daunis, H. Bull. Soc. Chim. Fr. 1961, 2238-2241. (k) Granger, I.;
Corbier, M.; Vinas, J.; Nau, P. Bull. Soc. Chim. Fr. 1957, 810-814. (l)
Knorr, I.; Lattke, E.; Raepple, E. Liebigs Ann. Chem. 1980, 1207-1215.
(9) For recent reviews, see: (a) Kappe, C. O.; Stadler, A. In MicrowaVes
in Organic and medicinal Chemistry; from the series, Methods and
principles in Medicinal Chemistry; Mannhold, R., Kubinyi, H., Folker, G.,
Eds.; Wiley-VCH: Weinheim, 2005; Vol. 25. (b) Hayes, B. L. Aldrichimica
Acta 2004, 37, 66-77. (c) Loupy, A., Ed. MicrowaVes in Organic Synthesis;
Wiley-VCH: Weinheim, 2002. For recent examples, see: (d) Liang, Y.;
Jiao, L.; Zhang, S. W.; Xu, J. X. J. Org. Chem. 2005, 70, 334-337. (e)
Wetter, C.; Studer, A. Chem. Commun. 2004, 174-175.
* To whom correspondence should be addressed. Phone: +86-10-62792673.
Fax: +86-10-62792673.
† Tsinghua University.
‡ Peking University.
(1) For examples, see: (a) Bogeso, K. P.; Christensen, A. V.; Hyttel, J.;
Liljefors, T. J. Med. Chem. 1985, 28, 1817-1828. (b) Bogeso, K. P.; Arnt,
J.; Frederiksen, K.; Hansen, H. O.; Hyttel, J.; Pedersen, H. J. Med. Chem.
1995, 38, 4380-4392. (c) Sugimoto, H. Pure Appl. Chem. 1999, 71, 2031-
2037. (d) Guillon, J.; Dallemagne, P.; Leger, J.-M.; Sopkova, J.; Bovy, P.
R.; Jarry, C.; Rault, S. Bioorg. Med. Chem. 2002, 10, 1043-1050.
(2) For examples, see: (a) Schumann, H.; Stenzel, O.; Girgsdies, F.
Organometallics 2001, 20, 1743-1751. (b) Herzog, M. N.; Chien, J. C.
W.; Rausch, M. D. J. Organomet. Chem. 2002, 654, 29-35.
(3) For a recent summary, see: Wessig, P.; Glombitza, C.; Muller, G.;
Teubner, J. J. Org. Chem. 2004, 69, 7582-7591.
(4) For recent examples, see: (a) Premasagar, V.; Palaniswamy, V. A.;
Eisenbraun, E. J. J. Org. Chem. 1981, 46, 2974-2976 and references therein.
(b) Cui, D. M.; Zhang, C.; Kawamura, M.; Shimada, S. Tetrahedron Lett.
2004, 45, 1741-1745. (c) Rendy, R.; Zhang, Y.; McElrea, A.; Gomez, A.;
Klumpp, D. A. J. Org. Chem. 2004, 69, 2340-2347.
(10) Paul, S.; Nanda, P.; Gupta, R.; Loupy, A. Synthesis 2003, 2877-
2881 and references therein.
(11) Lawrence, N. J.; Armitage, E. S. M.; Greedy, B.; Cook, D.; Ducki,
S.; McGown, A. T. Tetrahedron Lett. 2006, 47, 1637-1640.
(12) Koelsch, C. F.; Hochmann, H.; Le Claire, C. D. J. Am. Chem. Soc.
1943, 65, 59-60.
10.1021/jo060022p CCC: $33.50 © 2006 American Chemical Society
Published on Web 05/02/2006
4312
J. Org. Chem. 2006, 71, 4312-4315