Synthesis of 1,2,3,4-Tetramethyl- and 1,2,3,4-Tetraethylfluorene
Hu, Org. Lett. 2006, 8, 5057–5060; c) C.-G. Dong, Q. S. Hu,
Tetrahedron 2008, 64, 2537–2552.
Conclusions
[5] S. Ren, E. Igarashi, K. Nakajima, K. Kanno, T. Takahashi, J.
Am. Chem. Soc. 2009, 131, 7492–7493.
In conclusion, we have presented a new and concise
method for the synthesis of 1,2,3,4-tetra(m)ethylfluor-
enones and -fluorenes by making use of Dewar benzenes as
the key synthetic intermediates. Moreover, we demonstrated
that borane-based reductants are suitable for the reduction
of fluorenones to fluorenes. Last, but not least, the prefer-
ential coordination of the ruthenium atom in complex 11
to the less sterically hindered and the less electron-rich
benzene ring suggests that the unsymmetrically substituted
fluorenones and fluorenes accessible by this newly discov-
ered route might exert interesting coordination chemistry
with transition metals.
[6] a) T. W. Mojelsky, O. P. Strausz, Org. Geochem. 1986, 9, 31–37;
b) T. W. Mojelsky, O. P. Strausz, Org. Geochem. 1986, 9, 39–45.
[7] a) M. Ohkita, K. Ando, K. Yamamoto, T. Suzuki, T. Tsuji,
Chem. Commun. 2000, 83–84; b) M. Ohkita, K. Ando, T. Su-
zuki, T. Tsuji, J. Org. Chem. 2000, 65, 4385–4390; c) M. Ohkita,
K. Ando, T. Tsuji, Chem. Commun. 2001, 2570–2571.
[8] For other applications, see: a) M. J. Marsella, M. M. Meyer,
F. S. Tham, Org. Lett. 2001, 3, 3847–3849; b) M. J. Marsella,
S. Estassi, L. S. Wang, K. Yoon, Synlett 2004, 192–194.
[9] For studies regarding the mechanism of the Dewar benzene
rearrangement to benzene, see: a) R. P. Johnson, K. J. Daoust,
J. Am. Chem. Soc. 1996, 118, 7381–7385; b) R. W. A. Havenith,
L. W. Jenneskens, J. H. Lenthe, THEOCHEM 1999, 492, 217–
224; c) J. E. Norton, L. P. Olson, K. N. Houk, J. Am. Chem.
Soc. 2006, 128, 7835–7845; d) M. Dracˇínský, O. Castaño, M.
Kotora, P. Bourˇ, J. Org. Chem. 2010, 75, 576–581.
CCDC-873451 (for 10b) and -873452 (for 11) contain the supple-
mentary crystallographic data for this paper. These data can be
obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
ˇ
[10] a) S. Janková, M. Dracˇínský, I. Císarˇová, M. Kotora, Eur. J.
ˇ
Org. Chem. 2008, 47–51; b) S. Janková, I. Císarˇová, F. Uhlík,
ˇ
ˇ
P. S teˇpnicˇka, M. Kotora, Dalton Trans. 2009, 3137–3139; c) S.
Janková, S. Hybelbauerová, M. Kotora, Synlett 2011, 396–398.
[11] J. B. Koster, G. J. Timmermans, H. van Bekkum, Synthesis
1971, 139–140.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures, copies of the 1H NMR and 13C
NMR spectra for all new compounds, and crystallographic data
for 10b and 11.
[12] P. B. J. Driessen, H. Hogeveen, J. Am. Chem. Soc. 1978, 100,
1193–1200.
[13] J. H. Dopper, B. Greijdanus, H. Wynberg, J. Am. Chem. Soc.
1975, 97, 216–218.
Acknowledgments
[14] E. E. van Tamelen, S. P. Pappas, J. Am. Chem. Soc. 1963, 85,
Financial support from the Grant Agency of the Academy of Sci-
ences of the Czech Republic (project no. IAA400550702) and the
Ministry of Education, Youth and Sports of the Czech Republic
(project nos. LC06070 and MSM0021620857) is gratefully ac-
knowledged.
3297–3298.
[15] Hanamoto, Y. Koga, T. Kawanami, H. Furuno, J. Inanaga, Tet-
rahedron Lett. 2006, 47, 493–495.
[16] D. J. Iverson, G. Hunter, J. F. Blount, J. R. Danewood Jr., K.
Mislow, J. Am. Chem. Soc. 1981, 103, 6073–6083.
[17] A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7–13.
[18] L. Caglioti, Org. Syntheses, Coll. Vol. 1988, 6, 62–63.
[19] K. Ofosu-Asante, L. M. Stock, J. Org. Chem. 1987, 52, 2938–
2939.
[1] For examples of transition-metal coordination to the benzene
ring of fluorenes, see: a) J. Moss, J. Thomas, A. Ashley, A. R.
Cowley, D. O’Hare, Organometallics 2006, 25, 4279–4285; b)
J. Moss, J. Thomas, A. Ashley, A. R. Cowley, D. O’Hare, J.
Organomet. Chem. 2007, 692, 2071–2075.
[2] For examples of transition-metal coordination to the central
cyclopentadiene ring in fluorenes, see: a) P. Bazinet, T. D. Til-
ley, Organometallics 2006, 25, 4286–4291; b) P. Bazinet, T. D.
Tilley, Organometallics 2008, 27, 1267–1274; c) P. Bazinet, T. D.
Tilley, Organometallics 2009, 28, 2285–2293.
[20] E. V. Dehmlov, T. Niemann, A. Kraft, Synth. Commun. 1996,
26, 1467–1472.
[21] Cambridge Structural Database, version 5.33 of November
2011 with updates from November 2011 and February 2012.
[22] S. Guo, R. Hauptmann, J. J. Schneider, Z. Anorg. Allg. Chem.
2007, 633, 2332–2337.
[23] M. H. Garcia, A. Valente, P. Florindo, T. S. Morais, F. M. Pie-
dale, M. T. Duarte, V. Moreno, F. X. Avilés, J. Loreno, Inorg.
Chim. Acta 2010, 363, 3768–3775.
[3] L. H. Klemm, D. R. Taylor, Prep. Proc. Int. 1976, 8, 163–168.
[4] a) C.-G. Dong, Q. S. Hu, Angew. Chem. 2006, 118, 2347; An-
gew. Chem. Int. Ed. 2006, 45, 2289–2292; b) C.-G. Dong, Q. S.
Received: October 11, 2012
Published Online: November 21, 2012
Eur. J. Org. Chem. 2013, 44–47
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
47