Page 3 of 3
ChemComm
3. (a) T. Shioiri, A. Ando, M. Masui, T. Miura, T. Tatematsu, A.
Bohsako, M. Higashiyama, C. Asakura, ACS Symposium Series,
1997, 659, 136; (b) K. Manabe, Tetrahedron, 1998, 54, 14465; (c)
K. Manabe, Tetrahedron Lett., 1998, 39, 5807; (d) T. Werner, Adv.
Synth. Catal. 2009, 351, 1469; (e) D. Enders, T. V. Nguyen, Org.
Biomol. Chem. 2012, 10, 5327; (f) S. Shirakawa, A. Kasai, T.
these bifunctional thioureaꢀphosphonium salts in the catalytic
process, two control experiments were run in the presence of
catalyst 1n with a single hydrogenꢀbond NꢀMethylthiourea
and 1o without the phosphonium center under the conditions
used in table 1 (Figure 1). Compared to the results obtained
with 1d (71% yield and 89% ee in table 1, entry 4), with these
two modified catalysts, both the yield and the
enantioselecitivity of the product were significantly lower.
These results indicated that both the dual hydrogenꢀbond sites
of the thiourea moiety and the phosphonium centre of this
bifunctional phaseꢀtransfer catalysts were crucial to achieve
excellent enantiocontrol in the azaꢀHenry reaction.15
Tokuda, K. Maruoka, Chem. Sci., 2013, 4, 2248
.
4. (a) G. Wittig, G. Geissler, Justus Liebigs Ann. Chem. 1953, 580, 44;
(b) G. Wittig, U. Schöllkopf, Chem. Ber. 1954, 87, 1318.
5. (a) R. He, X. Wang, T. Hashimoto, K. Maruoka, Angew. Chem. Int.
Ed. 2008, 47, 9466; (b) R. He, K. Maruoka, Synthesis 2009, 2289;
(c) R. He, C. Ding, K. Maruoka, Angew. Chem. Int. Ed. 2009, 48,
4559; (d) C. J. Abraham, D. H. Paull, C. DogoꢀIsonagie, T. Lectka,
Synlett 2009, 1651; (e) C.ꢀL. Zhu, F.ꢀG. Zhang, W. Meng, J. Nie, D.
Cahard, J.ꢀA. Ma, Angew. Chem. Int. Ed. 2011, 50, 5869.
NHBoc
1j (5 mol %)
NHBoc
6. For selected recent examples: (a) D. Uraguchi, S. Sakaki, T. Ooi, J.
Am. Chem. Soc. 2007, 129, 12392; (b) D. Uraguchi, Y. Ueki, T. Ooi,
J. Am. Chem. Soc. 2008, 130, 14088; (c) D. Uraguchi, D.
Nakashima, T. Ooi, J. Am. Chem. Soc. 2009, 131, 7242; (d) D.
Uraguchi, Y. Asai, T. Ooi, Angew. Chem. Int. Ed. 2009, 48, 733; (e)
D. Uraguchi, T. Ito, T. Ooi, J. Am. Chem. Soc. 2009, 131, 3836; (f)
D. Uraguchi, Y. Ueki, T. Ooi, Science 2009, 326, 120; (g) D.
Uraguchi, S. Nakamura, T. Ooi, Angew. Chem. Int. Ed. 2010, 49,
7562; (h) D. Uraguchi, T. Ito, S. Nakamura, T. Ooi, Chem. Sci.
2010, 1, 488; (i) D. Uraguchi, N. Kinoshita, T. Ooi, J. Am. Chem.
Soc. 2010, 132, 12240; (j) D. Uraguchi, Y. Ueki, T. Ooi, Angew.
Chem. Int. Ed. 2011, 50, 3681; (k) M. T. Corbett, D. Uraguchi, T.
Ooi, J. S. Johnson, Angew. Chem. Int. Ed. 2012, 51, 4685; (l) D.
Uraguchi, Y. Ueki, T. Ooi, Chem. Sci. 2012, 3, 842; (m) D.
Uraguchi, N. Kinoshita, D. Nakashima, T. Ooi, Chem. Sci. 2012, 3,
3161; (n) D. Uraguchi, K. Yoshioka, Y. Ueki, T. Ooi, J. Am. Chem.
Soc. 2012, 134, 19370.
R
KOH (5 equiv)
+
Ph
SO2Ph
NO2
Ph
R
PhCH3, -20 o
5 h
C
NO2
4p: R = H, 99% yield
dr(syn:anti) = 37:63, ee = 89%/97%
3b: R = H
3c: R = Me
2a
4q: R = Me, 99% yield
dr(syn:anti) = 22:78, ee = 86%/96%
Same conditions as
3b and 3c
3d: R = CH2CO2Et
NHBoc
NHBoc
Ph
Raney Ni
yield = 65%
syn:anti = 43:57
ee = 88%/88%
CO2Et
Ph
H2 (1atm)
EtOAc, RT
48 h
HN
NO2
4r
5
O
syn:anti = 47:53, ee = 89%/86%
Scheme 1. Reactions with nitroalkanes 3 and a useful
transformation of the product 4r.
7. (a) E. A. Colby Davie, S. M. Mennen, Y. Xu, S. J. Miller, Chem.
Rev. 2007, 107, 5759; (b) L.ꢀW. Xu, J. Luo, Y. Lu, Chem. Commun.,
2009, 1807; (c) J. Paradowska, M. Stodulski, J. Mlynarski, Angew.
Chem. Int. Ed. 2009, 48, 4288; (d) L.ꢀW. Xu, Y. Lu, Org. Biomol.
Chem. 2008, 6, 2047; (e) L.ꢀW. Xu, L. Li, Z.ꢀH. Shi, Adv. Synth.
Catal. 2010, 352, 243; (f) Z. Chai, G. Zhao, Catal. Sci. Technol.
2012, 2, 29.
CF3
CF3
S
Bn
S
Bn
Br
F3C
N
N
F3C
N
N
H
H
H
PPh2Bn
PPh2
8. H. Xiao, Z. Chai, D. Cao, H. Wang, J. Chen, G. Zhao, Org. Biomol.
Chem. 2012, 10, 3195.
1n (single H-bond)
4a, 5 h, 83% yield, 5% ee
1o (no phosphonium salt)
4a, 48 h, 20% yield, 13% ee
Results:
9. (a) T. Ooi, D. Ohara, M. Tamura, K. Maruoka, J. Am. Chem. Soc.
2004, 126, 6844; (b) R. He, S. Shirakawa, K. Maruoka, J. Am.
Chem. Soc. 2009, 131, 16620; (c) T. Ooi, D. Ohara, K. Fukumoto,
K. Maruoka, Org. Lett. 2005, 7, 3195; (d) X. Wang, Q. Lan, S.
Shirakawa, K. Maruoka, Chem. Commun. 2010, 46, 321; (e) L.
Wang, S. Shirakawa, K. Maruoka, Angew. Chem. Int. Ed. 2011, 50,
5327; (f) K. M. Johnson, M. S. Rattley, F. Sladojevich, D. M.
Barber, M. G. Nuñez, A. M. Goldys, D. J. Dixon, Org. Lett. 2012,
14, 2492; (g) For an excellent review about bifunctional chiral
quaternary ammonium salt catalysts, see: J. Novacek, M. Waser,
Eur. J. Org. Chem. 2013, 637.
Figure 3. Control experiment results in support of cooperative catalysis
for the bifunctional catalysts .
In summary, we have developed novel chiral bifunctional
quaternary phosphonium salts as highly efficient
phaseꢀtransfer catalysts in the azaꢀHenry reaction from readily
available and inexpensive chiral amino acids. The easy
tunability of catalytic activities enabled by their modular
structures as well as their ready accessibility hold a great
promise for extensive applications in phaseꢀtransfer catalysis.
Efforts towards the application of these new phaseꢀtransfer
catalysts to other reactions as well as a deeper mechanistic
understanding of the catalytic process are underway in our
laboratory.
Research support from National Basic Research Program of
China(973 Program, 2010CB833200) the National Natural
Science Foundation of China (Nos.20172064, 203900502,
20532040, 20290180) and Science and Technology
Commission of Shanghai Municipality (11XD1406400).
10. For a review about the reactions of amidosulfones, see: B. Yin,Y.
Zhang, L.ꢀW. Xu Synthesis, 2010, 3583.
11. For a review, see: S.ꢀX. Wang, X. Han, F. Zhong, Y. Wang, Y. Lu,
Synlett 2011, 2766.
12. To study the stability of these thioureaꢀphosphonium salts under the
strongly basic reaction conditions, we performed 31P NMR analysis
of the catalyst in the reaction mixture and no decomposition signal
was observed. See the ESI for details.
13. (a) C. Palomo, M. Oiarbide, A. Laso, R. López, J. Am. Chem. Soc.
2005, 127, 17622; (b) F. Fini, V. Sgarzani, D. Pettersen, R. Herrera,
L. Bernardi, A. Ricci, Angew. Chem. Int. Ed. 2005, 44, 7975; (c) E.
GomezꢀBengoa, A. Linden, R. Lόpez, I. MúgicaꢀMendiola, M.
Oiarbide, C. Palomo, J. Am. Chem. Soc. 2008, 130, 7955; (d) G.
Kumaraswamy, A. Pitchaiah, Tetrahedron 2011, 67, 2536; (e) Y.
Wei , W. He, Y. Liu,, P. Liu , S. Zhang Org. Lett. 2012, 14 , 704.
14. A. K. Ghosh, S. LeshchenkoꢀYashchuk, D. D. Anderson, A.
Baldridge, M. Noetzel, H. B. Miller, Y. Tie, Y.ꢀF. Wang, Y. Koh, I.
T. Weber, H. Mitsuya, J. Med. Chem. 2009, 52, 3902
Notes and references
1. For selected reviews: (a) M. J. O′Donnell, Acc. Chem. Res. 2004,
37, 506; (b) B. Lygo, B. I. Andrews, Acc. Chem. Res. 2004, 37, 518;
(c) T. Ooi, K. Maruoka, Acc. Chem. Res. 2004, 37, 526; (d) T. Ooi,
K. Maruoka, Angew. Chem. Int. Ed. 2007, 46, 4222; (e) T.
Hashimoto, K. Maruoka, Chem. Rev. 2007, 107, 5656.
15. See the †ESI for a tentative transition state for the expalnation of the
stereochemical results of the reaction.
2. (a) V. Rauniyar, A. D. Lackner, G. L. Hamilton, F. D. Toste,
Science 2011, 334, 1681; (b) W.ꢀQ. Zhang, L.ꢀF. Chen, J. Yu, L.ꢀZ.
Gong, Angew. Chem. Int. Ed. 2012, 51, 4085.
This journal is © The Royal Society of Chemistry [year]Journal Name, [year], [vol], 00–00 |3