ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Regiocontrolled Synthesis of Polysubstituted
Pyrroles Starting from Terminal Alkynes,
Sulfonyl Azides, and Allenes
Tomoya Miura,* Kentaro Hiraga, Tsuneaki Biyajima, Takayuki Nakamuro, and
Masahiro Murakami*
Department of Synthetic Chemistry and Biological Chemistry, Kyoto University,
Katsura, Kyoto 615-8510, Japan
tmiura@sbchem.kyoto-u.ac.jp; murakami@sbchem.kyoto-u.ac.jp
Received May 14, 2013
ABSTRACT
1-Sulfonyl-1,2,3-triazoles, readily prepared from terminal alkynes and sulfonyl azides, react with allenes in the presence of a nickel(0) catalyst to
produce the corresponding isopyrroles. The initially produced isopyrroles are further converted to a wide range of polysubstituted pyrroles
through double bond transposition and Alder-ene reactions.
Pyrroles are privileged structural motifs found in a
number of natural products, pharmaceutical compounds,
and functional materials. Thus, the development of effi-
cient methods for their synthesis, particularly regiocon-
trolled synthesis of those containing multiple substituents,
from readily accessible compounds is of ever-increasing
importance.1,2
On the other hand, 4-substituted 1-sulfonyl-1,2,3-tria-
zoles are easily prepared from terminal alkynes and sulfo-
nyl azides by the well-established method using a copper(I)
catalyst.3 It has recently been disclosed that they act
as precursors for reactive transition metal complexes of
R-imino carbenes.4ꢀ7 If compared with related R-oxo
carbene complexes, the nitrogen atom of the R-imino
group is considerably more nucleophilic and thus this
moiety possibly participates in the cycloaddition reaction
with unsaturated compounds to construct N-heterocycles.
For example, the reactions with nitriles,5a alkynes,5d,6 alde-
hydes,5j and isocyanates5l furnish the corresponding imida-
zoles, pyrroles, oxazolines, and imidazolones, respectively.
(4) For a pioneering work using pyridotriazoles, see: Chuprakov, S.;
Hwang, F. W.; Gevorgyan, V. Angew. Chem., Int. Ed. 2007, 46, 4757.
(5) For rhodium(II)-catalyzed reactions, see: (a) Horneff, T.; Chuprakov,
S.; Chernyak, N.; Gevorgyan, V.; Fokin, V. V. J. Am. Chem. Soc. 2008, 130,
14972. (b) Chuprakov, S.; Kwok, S. W.; Zhang, L.; Lercher, L.; Fokin, V. V.
J. Am. Chem. Soc. 2009, 131, 18034. (c) Grimster, N.; Zhang, L.; Fokin, V. V.
J. Am. Chem. Soc. 2010, 132, 2510. (d) Chattopadhyay, B.; Gevorgyan, V.
Org. Lett. 2011, 13, 3746. (e) Chuprakov, S.; Malik, J. A.; Zibinsky, M.;
Fokin, V. V. J. Am. Chem. Soc. 2011, 133, 10352. (f) Miura, T.; Biyajima, T.;
Fujii, T.; Murakami, M. J. Am. Chem. Soc. 2012, 134, 194. (g) Selander, N.;
Fokin, V. V. J. Am. Chem. Soc. 2012, 134, 2477. (h) Miura, T.; Funakoshi,
Y.; Morimoto, M.; Biyajima, T.; Murakami, M. J. Am. Chem. Soc. 2012,
134, 17440. (i) Selander, N.; Worrell, B. T.; Fokin, V. V. Angew. Chem., Int.
Ed. 2012, 51, 13054. (j) Zibinsky, M.; Fokin, V. V. Angew. Chem., Int. Ed.
2013, 52, 1507. (k) Miura, T.; Tanaka, T.; Biyajima, T.; Yada, A.; Murakami
Angew. Chem., Int. Ed. 2013, 52, 3883. (l) Chuprakov, S.; Kwok, S. W.;
Fokin, V. V. J. Am. Chem. Soc. 2013, 135, 4652. (m) Parr, B. T.; Green, S. A.;
Davies, H. M. J. Am. Chem. Soc. 2013, 135, 4716. For reviews, see: (n)
Chattopadhyay, B.; Gevorgyan, V. Angew. Chem., Int. Ed. 2012, 51, 862. (o)
Gulevich, A. V.; Gevorgyan, V. Angew. Chem., Int. Ed. 2013, 52, 1371.
(6) For a nickel(0)-catalyzed reaction, see: Miura, T.; Yamauchi, M.;
Murakami, M. Chem. Commun. 2009, 1470.
(1) For a general review on transition-metal-mediated synthesis of
monocyclic aromatic heterocycles, see: (a) Gulevich, A. V.; Dudnik,
A. S.; Chernyak, N.; Gevorgyan, V. Chem. Rev. 2013, 113, 3084. For
reviews on pyrrole synthesis, see: (b) Balme, G. Angew. Chem., Int. Ed.
2004, 43, 6238. (c) Schmuck, C.; Rupprecht, D. Synthesis 2007, 3095.
(2) For selected recent examples of pyrrole synthesis, see: (a) Lourdusamy,
E.; Yao, L.; Park, C.-M. Angew. Chem., Int. Ed. 2010, 49, 7963. (b) Trost,
B. M.; Lumb, J.-P.; Azzarelli, J. M. J. Am. Chem. Soc. 2011, 133, 740. (c)
Huestis, M. P.; Chan, L.; Stuart, D. R.; Fagnou, K. Angew. Chem., Int.
Ed. 2011, 50, 1338. (d) Xu, X.; Ratnikov, M. O.; Zavalij, P. Y.; Doyle,
M. P. Org. Lett. 2011, 13, 6122. (e) Chen, F.; Shen, T.; Cui, Y.; Jiao, N.
Org. Lett. 2012, 14, 4926. (f) Wang, L.; Ackermann, L. Org. Lett. 2013,
15, 176. (g) Reddy, B. V. S.; Reddy, M. R.; Rao, Y. G.; Yadav, J. S.;
Sridhar, B. Org. Lett. 2013, 15, 464. (h) Michlik, S.; Kempe, R. Nat.
Chem. 2013, 5, 140.
(3) (a) Yoo, E. J.; Ahlquist, M.; Kim, S. H.; Bae, I.; Fokin, V. V.;
Sharpless, K. B.; Chang, S. Angew. Chem., Int. Ed. 2007, 46, 1730. (b)
Raushel, J.; Fokin, V. V. Org. Lett. 2010, 12, 4952. (c) Liu, Y.; Wang, X.;
Xu, J.; Zhang, Q.; Zhao, Y.; Hu, Y. Tetrahedron 2011, 67, 6294.
(7) For a silver(I)-catalyzed reaction, see: Liu, R.; Zhang, M.;
Winston-McPherson, G.; Tang, W. Chem. Commun. 2013, 49, 4376.
r
10.1021/ol401340u
XXXX American Chemical Society