ChemComm
Communication
Table 1 EC100 of 2–8 to VT-1 with or without 30 min of photo-irradiation using
chemical synthesis and biological evaluation provide signifi-
cant information about the molecular design of novel and
artificial protein photo-degrading agents for controlling the
functions of proteins involved in diseases.
This research was supported in part by the High-Tech
Research Center Project for Private Universities: Matching Fund
Subsidy, 2006–2010, Scientific Research (B) (No. 20310140 and
23310153) and Scientific Research on Innovative Areas
‘‘Chemical Biology of Natural Products’’ from the Ministry of
Education, Culture, Sports, Science and Technology of Japan
(MEXT) and Grant-in-Aid for JSPS fellows (22-5423).
a visible light lamp (diffuse sunlight, 100 W)
Compound
2
3
4
5
6
7
8
VIS(À) (mM)
VIS(+) (mM)
>100
>100
>20
>20
1.9
0.32
1.6
0.19
3.4
0.93
22
1.1
19
0.62
concentrations (Fig. 3(b)). These results indicated that hybrid 5
exhibited the most potent photo-degrading activity towards VT-1
among the tested hybrids 4–8. The photo-degrading activities of 4
and 8 were similar, whereas hybrids 6 and 7 showed the weakest
activities among the hybrids 4–8. These results indicated that the
photo-degrading activity of the hybrids did not simply increase as
the number of Gb3 units increased; rather, two GB3 units were
most effective, and their optimal position was when positioned cis
to each other.
Notes and references
1 (a) S. D. Manning, A. S. Motiwala, A. C. Springman, W. Qi,
D. W. Lacher, D. W. Lacher, L. M. Ouellettem, J. M. Mladonicky,
P. Somsel, J. T. Rudrik, S. E. Dietrich, W. Zhang, B. Swaminathan,
D. Alland and T. S. Whittam, Proc. Natl. Acad. Sci. U. S. A., 2008,
105, 4868; (b) C. Frank, D. Werber, J. P. Cramer, M. Askar, M. Faber,
M. an der Heiden, H. Bernard, A. Fruth, R. Prager, A. Spode,
M. Wadl, A. Zoufaly, S. Jordan, M. J. Kemper, P. Follin, L. Mu¨ller,
L. A. King, B. Rosner, U. Buchholz, K. Stark and G. Krause, N. Engl. J.
Med., 2011, 365, 1771; (c) F. Scheutz, E. M. Nielsen, J. Frimodt-
Møller, N. Boisen, S. Morabito, R. Tozzoli, J. P. Nataro and
A. Caprioli, Euro Surveill., 2011, 16, pii: 19889.
To confirm that hybrids 4–8 reduce the cytotoxicity of VT-1 to
Vero cells, cell proliferation after treatment of VT-1 with hybrids
4–8, and with 2 and 3, was measured by staining with crystal
violet. The effective concentrations (EC100: a minimum concen-
tration to show 100% inhibition of the cytotoxicity of VT-1 to Vero
cells) of 2–8 are summarized in Table 1. Gb3 trisaccharide 2 and
porphyrin derivative 3, which does not possesses a Gb3 moiety,
did not reduce the cytotoxicity of VT-1 even at concentrations of
100 and 20 mM (the maximum concentration due to the low
solubility of 3), respectively. On the other hand, the EC100 values of
hybrids 4–8 were 1.9, 1.6, 3.4, 22, and 19 mM, respectively, without
visible light irradiation. These results suggested that the hydro-
phobic porphyrin scaffold 3 is not sufficient to inhibit the
cytotoxicity of VT-1. Moreover, Gb3 trisaccharide 2 did not signifi-
cantly reduce cytotoxicity due to its low affinity5e,12 for the VT-1 B
subunit. In sharp contrast, the porphyrin–globotriose hybrids 4–8,
which possess the Gb3 moiety, potently reduced the activity
compared to 2 and 3. This may be due to hydrophobic inter-
actions between the porphyrin scaffold and the target protein and
another interaction between the Gb3 scaffold and the target
protein synergistically enhancing the binding ability of hybrids
4–8 to VT-1. In addition, hybrid 5 exhibited the most potent
neutralizing activity among the hybrids 4–8. Moreover, as
expected, treatment of VT-1 with 4–8 under photo-irradiation
using visible light resulted in much more efficient reduction of
VT-1 cytotoxicity compared to that in the absence of photo-
irradiation. The EC100 values of hybrids 4–8 were 0.32, 0.19,
0.93, 1.1, and 0.62 mM, respectively, under photo-irradiation
conditions. These results indicated that photo-degradation of
VT-1 using hybrids 4–8 efficiently enhanced reduction of VT-1
cytotoxicity to Vero cells. In addition, hybrid 5, which showed the
most potent photo-degradation activity, exhibited the most potent
reducing activity against the cytotoxicity of VT-1 under photo-
irradiation conditions. The order of reducing activities of hybrids
4–8 under photo-irradiation conditions roughly followed that of
photo-degrading activities of hybrids 4–8 towards VT-1.
2 (a) M. A. Karmali, B. T. Steele, M. Petric and C. Lim, Lancet, 1983,
1, 619; (b) M. A. Karmali, M. Petric, C. Lim, P. C. Fleming, G. S. Arbus
and H. Lior, J. Infect. Dis., 1985, 151, 775.
3 (a) A. D. O’Brien, V. L. Tesh, A. Donohue-Rolfe, M. P. Jackson, S. Olsnes,
K. Sandvig, A. A. Lindberg and G. T. Keusch, Curr. Top. Microbiol.
Immunol., 1992, 180, 65; (b) S. De Grandis, J. Ginsberg, M. Toone,
S. Climie, J. Friesen and J. Brunton, J. Bacteriol., 1987, 169, 4313.
4 (a) T. G. Obrig, T. P. Moran and R. J. Colinas, Biochem. Biophys. Res.
Commun., 1985, 130, 879; (b) S. K. Saxena, A. D. O’Brien and E. J.
Ackermans, J. Biol. Chem., 1989, 264, 596; (c) A. Donohue-Rolfe,
D. W. Acheson and G. T. Keusch, Rev. Infect. Dis., 1991, 13(Suppl. 4), S293.
5 (a) P. E. Stein, A. Boodhoo, G. J. Tyrrell, J. L. Brunton and R. J. Read,
Nature, 1992, 355, 748; (b) E. N. Kitova, P. I. Kitov, D. R. Bundle and
J. S. Klassen, Glycobiology, 2001, 11, 605; (c) D. J. Bast, L. Banerjee,
C. Clark, R. J. Read and J. L. Brunton, Mol. Microbiol., 1999, 32, 953;
(d) P. M. St. Hilaire, M. K. Boyd and E. J. Toone, Biochemistry, 1994,
33, 14452; (e) P. I. Kitov, J. M. Sadowska, G. Mulvey, G. D. Armstrong,
H. Ling, N. S. Pannu, R. J. Read and D. R. Bundle, Nature, 2000,
403, 669.
6 (a) G. L. Mulvey, P. Marcato, P. I. Kitov, J. Sadowska, D. R. Bundle
and G. D. Armstrong, J. Infect. Dis., 2003, 187, 640; (b) K. I. Kitov,
G. L. Mulvey, T. P. Griener, T. Lipinski, D. Solomon, E. Paszkiewicz,
J. M. Jacobson, J. M. Sadowska, M. Suzuki, K. Yamamura,
G. D. Armstrong and D. R. Bundle, Proc. Natl. Acad. Sci. U. S. A.,
2008, 105, 16837; (c) P. Arya, K. M. Kutterer, H. Qin, J. Roby,
M. L. Barnes, S. Lin, C. A. Lingwood and M. G. Peter, Bioorg. Med.
Chem., 1999, 7, 2823.
7 (a) K. Nishikawa, Arch. Immunol. Ther. Exp., 2011, 59, 239;
(b) K. Matsuoka, E. Kita, N. Okabe, M. Mizuguchi, K. Hino,
S. Miyazawa, C. Yamasaki, J. Aoki, S. Takashima, Y. Yamakawa,
M. Nishijima, D. Terunuma, H. Kuzuhara and Y. Natori, Proc. Natl.
Acad. Sci. U. S. A., 2002, 99, 7669.
8 S. Tanimoto, S. Matsumura and K. Toshima, Chem. Commun., 2008,
3678.
9 H. Schagger and G. von Jagow, Anal. Biochem., 1987, 166, 368.
10 For similar examples, see: (a) G. B. Jones, J. M. Wright, G. Hynd,
J. K. Wyatt, M. Yancisin and M. A. Brown, Org. Lett., 2000, 2, 1863;
(b) T. Furuta, M. Sakai, H. Hayashi, T. Asakawa, F. Kataoka, S. Fujii,
T. Suzuki, Y. Suzuki, K. Tanaka, N. Fishkin and K. Nakanishi, Chem.
Commun., 2005, 4575.
11 (a) R. T. Dean, S. Fu, R. Stocker and M. J. Davies, Biochem. J., 1997,
324, 1; (b) M. J. Davies, Biochem. Biophys. Res. Commun., 2003,
305, 761; (c) M. Gracanin, C. L. Hawkins, D. I. Pattison and
M. J. Davies, Free Radical Biol. Med., 2009, 47, 92.
In conclusion, the present work demonstrates not only the
molecular design and chemical synthesis of novel porphyrin–
Gb3 hybrids, but also their target-selective protein-degradation
profiles and potency for reducing the cytotoxicity of VT-1 to
Vero cells under photo-irradiation conditions. The described
12 K. M. Gallegos, D. G. Conrady, S. S. Karve, T. S. Gunasekera,
A. B. Herr and A. A. Weiss, PLoS One, 2012, 7, e30368.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 6027--6029 6029