ChemComm
Communication
could be formed by combination of two units of either 8b or 9b,
while complexes 7b and 7c could be formed by combination of
8b with 9b. The complexes all contain chiral centres and 7a or
7d could be formed from two units of 8b or 9b in the AC, CA or
CC, AA enantiomeric forms respectively (C = clockwise, A =
anticlockwise), while 7b or 7c could be formed from 8b and 9b
in the AC, CA or CC, AA enantiomeric forms respectively.
This work shows that easy activation of aryl–sulfur bonds
can occur if the C–S bond is arranged so that directed metalla-
tion is favoured. A theoretical study indicates that the key step
occurs by pivoting of the aryl group in the flexible 6-membered
chelate ring of complex 3b to allow concerted, non-polar
oxidative addition to platinum(II). It is likely that oxidative
addition of aryl–halogen bonds to platinum(II) occurs in a
similar way, though the intermediates analogous to 3b cannot
be detected.7,8 Catalytic cross-coupling using aryl–sulfur bonds
might be possible using similar bond activation strategies.
Notes and references
‡ X-ray data: 6a, C28H48N4Pt2S2, fw 895.00, monoclinic, P21/c, a =
9.525(3), b = 15.830(5), c = 11.853(4), b = 118.167(10), V = 1575.6(9),
Z = 2, T = 110 K, reflns total 5890, R1 (all data) 0.0341, wR2 (all data)
%
0.0399; 7a, C32H38N2Pt2S2, fw 904.94, triclinic, P1, a = 8.461(5), b =
9.198(6), c = 11.156(5), a = 93.302(8), b = 109.27(3), g = 108.338(14), V =
765.2(8), Z = 1, T = 150 K, reflns total 6292, R1 (all data) 0.0367, wR2 (all
data) 0.0507; 7b, C32H38N2Pt2S2, fw 904.94, monoclinic, Cc, a =
20.627(6), b = 9.269(3), c = 16.440(4), b = 111.186(9), V = 2930.7(14),
Z = 4, T = 110 K, reflns total 9219, R1 (all data) 0.0275, wR2 (all data)
0.0464, flack = ꢀ0.004.
1 L. Wang, W. He and Z. Yu, Chem. Soc. Rev., 2013, 42, 599;
R. A. Sanchez-Delgado, J. Mol. Catal., 1994, 86, 287.
2 A. Nova, F. Novio, P. Gonzalez-Duarte, A. Lledos and R. Mas-Balleste,
Eur. J. Inorg. Chem., 2007, 5707; L. Zhao and T. C. W. Mak, Organo-
metallics, 2007, 26, 4439; F. Guyon, M. Knorr, A. Garillon and
C. Strohmann, Eur. J. Inorg. Chem., 2012, 282; N. Nakata,
N. Furukawa, T. Toda and A. Ishii, Angew. Chem., Int. Ed., 2010,
49, 5784; T. A. Atesin, S. Kundu, K. Skugrud, K. A. Lai, B. D. Swartz,
T. Li, W. W. Brennessel and W. D. Jones, Organometallics, 2010,
29, 4923; Y. Yu, H. Li, E. J. Watson, K. L. Virkaitis, G. B. Carpenter and
D. A. Sweigart, Organometallics, 2008, 27, 3550; R. Tan and D. Song,
Organometallics, 2010, 30, 1637; S. Kundu, B. E. R. Snyder,
A. P. Walsh, W. W. Brennessel and W. D. Jones, Polyhedron, DOI:
10.1016/j.poly.2012.07.071.
Scheme 2 Proposed mechanism of formation of complexes 7a–7d (above) and
relative energies (below). Calculated energies (R = Ph) are given in kJ molꢀ1
distances in Å.
;
3 N. Duran, W. Clegg, K. A. Fraser and P. Gonzalez-Duarte, Inorg.
Chim. Acta, 2000, 300, 790; M. S. McCready and R. J. Puddephatt,
Inorg. Chem. Commun., 2011, 14, 210.
4 S. Huo, S. Shen, D. Liu and T. Shi, J. Phys. Chem., 2012, 116, 6522;
E. Wexselblatt and D. Gibson, J. Inorg. Biochem., 2012, 117, 220.
5 W. D. Jones and L. Dong, J. Am. Chem. Soc., 1991, 113, 559;
C. Bianchini, A. Meli, M. Peruzzini, F. Vizza, P. Frediani, V. Herrera
and R. A. Sanchez-Delgado, J. Am. Chem. Soc., 1993, 115, 2731;
T. A. Atesin and W. D. Jones, Organometallics, 2008, 27, 53;
M. Shibue, M. Hirotsu, T. Nishioka and I. Kinoshita, Organometallics,
2008, 27, 4475; A. Binobaid, K. J. Cavell, M. S. Nechaev and
B. M. Kariuki, Aust. J. Chem., 2011, 64, 1141.
6 R. Contreras, M. Valderrama, C. Beroggi and D. Boys, Polyhedron,
2001, 20, 3127.
7 C. M. Anderson, M. A. Weinstein, J. Morris, N. Kfoury, L. Duman,
T. A. Balema, A. Kreider-Mueller, P. Scheetz, S. Ferrara, M. Chierchia
and J. M. Tanski, J. Organomet. Chem., 2013, 723, 188; C. Anderson,
M. Crespo, M. Font-Bardia, A. Klein and X. Solans, J. Organomet.
Chem., 2000, 601, 22.
3
separate couplings were not resolved, with all values of J(PtH)
in the narrow range 19–21 Hz, and the MeS resonances appear
as 1 : 8 : 18 : 8 : 1 multiplets due to coupling to 195Pt.
Although the product mixtures were complex, the isomers
are likely to be formed by a common mechanism as shown in
Scheme 2, illustrated for the case with R = Ph. The 6-membered
chelate ring in 3b is flexible and the aryl group can slide from
sulfur to platinum by concerted oxidative addition to give the
5-coordinate square pyramidal platinum(IV) complex 8b, in
which the thiolate is cis to the aryl group. The activation energy
is calculated by DFT to be 38 kJ molꢀ1, when R = Ph. The sulfur
atom moves only slightly during this step of the reaction. 8 T. Calvet, M. Crespo, M. Font-Bardia, S. Jansat and M. Martinez,
Organometallics, 2012, 31, 4367; M. Crespo, X. Solans and M. Font-
However, complex 8b can then equilibrate easily with the
Bardia, J. Organomet. Chem., 1996, 518, 105.
isomer 9b, in which the thiolate is trans to the aryl group and
9 E. W. Abel, S. K. Bhargava and K. G. Orrell, Prog. Inorg. Chem., 1984,
which is calculated to be more stable. Complexes 7a and 7d
32, 1; K. G. Orrell, Coord. Chem. Rev., 1989, 96, 1.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 6421--6423 6423