ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Ratiometric Fluorescent Probes for
Detection of Intracellular Singlet Oxygen
Dayoung Song,† Somin Cho,† Yejee Han,† Youngmin You,*,‡ and Wonwoo Nam*,†
Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea,
and Department of Advanced Materials Engineering for Information and Electronics,
Kyung Hee University, Yongin-si, Gyeonggi-do 446-701, Korea
odds2@khu.ac.kr (YY); wwnam@ewha.ac.kr (WN)
Received May 20, 2013
ABSTRACT
We have developed a series of molecular probes for the fluorescent detection of singlet dioxygen (1O2). The probes, based on asymmetrically substituted
1,3-diarylisobenzofurans, undergo the [2 þ 4] cycloaddition reaction with 1O2, producing ratiometric fluorescent responses. Two-photon fluorescence
microscope experiments demonstrated the biological utility of the probes for the visualization of endogenous 1O2 in macrophage cells.
Singlet dioxygen (1O2) is a highly reactive oxygen species
(hROS) that oxidizes a broad range of biomolecules, such
aqueous milieu.12 Furthermore, direct monitoring of the
phosphorescence of 1O2 lacks practical utility because the
emission features very low photoluminescence quantum
yields (PLQYs ≈ 10ꢀ6).13 Thus there is a strong need for
1O2 probes with high sensitivity and large dynamic ranges.
Among various probes, photoluminescent probes are
the most attractive because they provide many advantages
in bioimaging applications.14 Fluorescent 1O2 probes have
been developed by conjugating 1O2 traps and fluorophores,
1
as nucleic acids,1ꢀ3 lipids,4 and proteins.4ꢀ6 These O2
oxidation chemistries provide key mechanisms in the
regulation of intracellular signaling pathways7ꢀ11 and thus
are critically linked to human pathophysiology. However,
studies toward understanding molecular mechanisms of
1O2 in vivo have been significantly retarded by difficulties
due to its short half-life (τ1/2 = 10ꢀ6 to 10ꢀ5 s) in the
such as fluorescein,15ꢀ17 poly(fluorene),18ꢀ20 cyanine,21
a
† Ewha Womans University.
Eu(III) complex,22 and a Re(I) complex.23 Reactive dienes,
including 9,10-disubstituted anthracene15ꢀ18,20,22,23 and
‡ Kyung Hee University.
(1) Kang, P.; Foote, C. S. J. Am. Chem. Soc. 2002, 124, 4865–4873.
(2) Cadet, J.; Bellon, S.; Berger, M.; Bourdat, A.-G.; Douki, T.;
Duarte, V.; Frelon, S.; Gasparutto, D.; Muller, E.; Ravanat, J.-L.;
Sauvaigo, S. Biol. Chem. 2002, 383, 933–943.
(3) Ravanat, J.-L.; Cadet, J. Chem. Res. Toxicol. 1995, 8, 379–388.
(4) Wilkinson, F.; Helman, W. P.; Ross, A. B. J. Phys. Chem. Ref.
Data 1995, 24, 663–1021.
(5) Davies, M. J. Biochem. Biophys. Res. Commun. 2003, 305, 761–
770.
(6) Matheson, I. B. C.; Etheridge, R. D.; Kratowich, N. R.; Lee, J.
Photochem. Photobiol. 1975, 21, 165–171.
(13) Schweitzer, C.; Schmidt, R. Chem. Rev. 2003, 103, 1685–1757.
(14) Gomes, A.; Fernandes, E.; Lima, J. L. F. C. J. Biochem. Biophys.
Methods 2005, 65, 45–80.
(15) Umezawa, N.; Tanaka, K.; Urano, Y.; Kikuchi, K.; Higuchi, T.;
Nagano, T. Angew. Chem., Int. Ed. 1999, 38, 2899–2901.
(16) Tanaka, K.; Miura, T.; Umezawa, N.; Urano, Y.; Kikuchi, K.;
Higuchi, T.; Nagano, T. J. Am. Chem. Soc. 2001, 123, 2530–2536.
(17) Gollmer, A.; Arnbjerg, J.; Blaikie, F. H.; Pedersen, B. W.;
Breitenbach, T.; Daasbjerg, K.; Glasius, M.; Ogilby, P. R. Photochem.
Photobiol. 2011, 87, 671–679.
€
(7) Klotz, L.-O.; Kroncke, K.-D.; Sies, H. Photochem. Photobiol. Sci.
2003, 2, 88–94.
(18) Koylu, D.; Sarrafpour, S.; Zhang, J.; Ramjattan, S.; Panzer,
M. J.; Thomas, S. W., III Chem. Commun. 2012, 48, 9489–9491.
(19) Altınok, E.; Friedle, S.; Thomas, S. W., III Macromolecules
2013, 46, 756–762.
(20) Zhang, J.; Sarrafpour, S.; Pawle, R. H.; Thomas, S. W., III
Chem. Commun. 2011, 47, 3445–3447.
(8) Ryter, S. W.; Tyrrell, R. M. Free Radical Biol. Med. 1998, 24,
1520–1534.
(9) Wang, X.; Martindale, J. L.; Liu, Y.; Holbrook, N. J. Biochem. J.
1998, 333, 291–300.
€
(10) Kroncke, K.-D.; Klotz, L.-O.; Suschek, C. V.; Sies, H. J. Biol.
Chem. 2002, 277, 13294–13301.
(11) Klotz, L.-O.; Briviba, K.; Sies, H. Methods Enzymol. 2000, 319,
(21) Xu, K.; Wang, L.; Qiang, M.; Wang, L.; Li, P.; Tang, B. Chem.
Commun. 2011, 47, 7386–7388.
130–143.
(22) Song, B.; Wang, G.; Tan, M.; Yuan, J. J. Am. Chem. Soc. 2006,
128, 13442–13450.
(12) Lindig, B. A.; Rodgers, M. A. J. J. Phys. Chem. 1979, 83, 1683–
1688.
(23) Liu, Y.-J.; Wang, K.-Z. Eur. J. Inorg. Chem. 2008, 5214–5219.
r
10.1021/ol401421r
XXXX American Chemical Society