Journal of the American Chemical Society
Article
Notes
exchange of starter and extender units in polyketide and
nonribosomal peptide pathways.24,28,48−59 In this work we
report an unparalleled systematic conversion of fully synthetic
polyphenolic aglycones into the corresponding glycosides on a
preparative scale. This efficient chemo-biosynthetic route not
only led to the first crystal structure of a chartreusin derivative
with a native glycosyl residue but also generated a library of
aglycone-modified chartreusins. Their biological evaluation
grants fresh insights into the role of ring substitution of the
DNA intercalating unit. For the first time it was possible to
deduce structural prerequisites for antitumoral activities of the
benzonaphthopyranones. Three new chartreusin derivatives
(14, 70, and 73) show potent antitumoral activity. This finding
that norchartreusin lacks cytostatic properties highlights the
crucial role of the aglycone substitution pattern for the
pharmacological activity. Moreover, we have demonstrated
that altering the substituent at position C-1 of the aglycone
causes a substantial enhancement in antiproliferative cell
selectivity compared to the analogs modified at position C-2.
Notably, all chartreusin derivatives interfere with DNA, and two
new chartreusin derivatives show an increased antiproliferative
activity when irradiated with blue light. One of these
compounds harbors an ethynyl group in lieu of an aliphatic
group, which has not yet been reported for any photoreactive
agents employed in in vitro cell assays. The most surprising
finding was that the simple lack of the methyl group causes a
dramatic decrease in cytotoxicity, but strongly enhances
antibacterial activities. Specifically, the desmethyl variant 27 is
active against mycobacteria, which are in the focus of antibiotic
research due to the rise of tuberculosis and other life-
threatening infectious diseases. Thus, the blend of biological
and synthetic methods not only granted access to a library of
chartreusins that are otherwise not accessible but also yielded
promising candidates for further development as antitumoral or
antibacterial agents (Figure 7).
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank U. Knupfer for performing the fermentation, C.
̈
Karkowski for downstream processing, A. Perner for MS
analysis, H. Heinecke for NMR measurements, and E.-M.
Neumann for assistance in biological assays. Financial support
by the BMBF (GenBioCom in the GenoMik program) to C.H.,
the EMBO foundation and the Academy of Finland to M.M.-K.
is gratefully acknowledged.
REFERENCES
■
(1) Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2012, 75, 311−335.
(2) Souza, A. C.; de Fatima, A.; da Silveira, R. B.; Justo, G. Z. Curr.
Drug Targets 2012, 13, 1072−1082.
(3) Cragg, G. M.; Kingston, D. G. I.; Newman, D. J. Anti Cancer
Agents From Natural Products; Taylor & Francis: Abingdon, U.K.,
2005.
(4) Wong, A.; Toth, I. Curr. Med. Chem. 2001, 8, 1123−1136.
(5) Kren, V.; Martinkova, L. Curr. Med. Chem. 2001, 8, 1303−1328.
(6) Weissman, K. Chem. Biol. 2005, 12, 512−514.
(7) Uchida, H.; Nakakita, Y.; Enoki, N.; Abe, N.; Nakamura, T.;
Munekata, M. J. Antibiot. 1994, 47, 655−667.
(8) Uchida, H.; Nakakita, Y.; Enoki, N.; Abe, N.; Nakamura, T.;
Munekata, M. J. Antibiot. 1994, 47, 648−654.
(9) Kon, K.; Sugi, H.; Tamai, K.; Ueda, Y.; Yamada, N. J. Antibiot.
1990, 43, 372−382.
(10) Portugal, J. Curr. Med. Chem. 2003, 3, 411−420.
(11) Lorico, A.; Long, B. H. Eur. J. Cancer 1993, 29A, 1985−1991.
(12) Asai, G.; Yamamoto, N.; Toi, M.; Shin, E.; Nishiyama, K.;
Sekine, T.; Nomura, Y.; Takashima, S.; Kimura, M.; Tominaga, T.
Cancer Chemother. Pharmacol. 2002, 49, 468−472.
(13) Verweij, J.; Wanders, J.; Nielsen, A. L.; Pavlidis, N.; Calabresi,
F.; Huinink, W. T.; Bruntsch, U.; Piccart, M.; Franklin, H.; Kaye, S. B.
Ann. Oncol. 1994, 5, 375−376.
(14) Salas, X.; Portugal, J. FEBS Lett. 1991, 292, 223−228.
(15) Takai, M.; Uehara, Y.; Beisler, J. A. J. Med. Chem. 1980, 23,
549−553.
(16) Hou, J.; Liu, P.; Qu, H.; Fu, P.; Wang, Y.; Wang, Z.; Li, Y.;
Teng, X.; Zhu, W. J. Antibiot. 2012, 65, 523−526.
(17) Shepherd, M. D.; Liu, T.; Mendez, C.; Salas, J. A.; Rohr, J. Appl.
Environ. Microbiol. 2011, 77, 435−441.
(18) Li, Y. Q.; Huang, X. S.; Ishida, K.; Maier, A.; Kelter, G.; Jiang, Y.;
Peschel, G.; Menzel, K. D.; Li, M. G.; Wen, M. L.; Xu, L. H.; Grabley,
S.; Fiebig, H. H.; Jiang, C. L.; Hertweck, C.; Sattler, I. Org. Biomol.
Chem. 2008, 6, 3601−3605.
(19) Xu, Z.; Jakobi, K.; Welzel, K.; Hertweck, C. Chem. Biol. 2005,
12, 579−588.
(20) Ueberschaar, N.; Dahse, H.-M.; Bretschneider, T.; Hertweck, C.
Angew. Chem., Int. Ed. 2013, 52, 6185−6189.
Figure 7. Overview on the impact of ring substituents on biological
activity. Orange arrows highlight groups that support antiproliferative
activity against K-562 leukemia cells, dark-blue arrows highlight groups
that support antibacterial activity toward M. vaccae.
(21) Canham, P. L.; Vining, L. C.; McInnes, A. G.; Walter, J. A.;
Wright, J. L. C. Can. J. Chem. 1977, 55, 2450−2457.
(22) Hertweck, C.; Luzhetskyy, A.; Rebets, Y.; Bechthold, A. Nat.
Prod. Rep. 2007, 24, 162−190.
(23) Moore, B. S.; Hertweck, C. Nat. Prod. Rep. 2002, 19, 70−99.
(24) Xu, Z.; Schenk, A.; Hertweck, C. J. Am. Chem. Soc. 2007, 129,
6022−6030.
ASSOCIATED CONTENT
* Supporting Information
Experimental details, physicochemical data, biological assays,
MS- and NMR spectra. This material is available free of charge
■
(25) Raty, K.; Kantola, J.; Hautala, A.; Hakala, J.; Ylihonko, K.;
Mantsala, P. Gene 2002, 293, 115−122.
S
(26) Gust, B.; Challis, G. L.; Fowler, K.; Kieser, T.; Chater, K. F. Proc.
Natl. Acad. Sci. U.S.A. 2003, 100, 1541−1546.
(27) Jakobi, K.; Hertweck, C. J. Am. Chem. Soc. 2004, 126, 2298−
2299.
AUTHOR INFORMATION
Corresponding Author
■
(28) Kennedy, J. Nat. Prod. Rep. 2008, 25, 25−34.
(29) Mal, D.; Patra, A.; Roy, H. Tetrahedron Lett. 2004, 45, 7895−
7898.
17415
dx.doi.org/10.1021/ja4080024 | J. Am. Chem. Soc. 2013, 135, 17408−17416