presence of silver or copper salts, or other electrophiles.7
Selenoacids,8 with the more polarizable and more nucleo-
philic selenium atom,9 have the potential for even greater
reactivity in amide bond forming reactions, either as direct
precursors to amides or as precursors to reactive selenoe-
sters. Indeed, this potential has been recognized by several
groups, particularly with respect to the increased reactivity
of selenocarboxylates toward simple azides,10 and has
begun to be exploited in the native chemical ligation of
peptides.11 The potential of selenoacid chemistry is, how-
ever, limited by the instability of selenocarboxylates to-
ward aerobic oxidation and by the limited range of
methods developed to generate them in situ. Thus, seleno-
carboxylates are typically generated by the reaction of
metal (hydrogen) selenides with activated carboxylic acid
derivatives,10d,11a,12 reaction of trimethylsilyl selenocarbox-
ylates with the fluoride anion,12b,13 nucleophilic deacylation
of diacyl selenides10b,14 and diacyl diselenides,10c,15 or selena-
tion of carboxylic acids10a,16 with Woollins’ reagent.17 While
these methods have proved adequate for the synthesis of
simple selenocarboxylates, all suffer from problems asso-
ciated with the lack of functional group compatibility or
the use of unstable air-sensitive reagents.
By analogy with the generation of thiocarboxylates by
elimination from S-(9-fluorenylmethyl)4c or S-(2-
cyanoethyl)3l thiocarboxylates, we conceived that the use-
fulness of selenocarboxylates in synthesis would be ex-
panded by the availability of a general, clean method for
their generation in situ from a readily accessible, stable
derivative such as a Se-(9-fluorenylmethyl) selenocarbox-
ylate. Toward this end we prepared the yellow, crystalline,
and air-stable bis(9-fluorenylmethyl) diselenide 2 by reac-
tion of 9-fluorenylmethyl tosylate 1 with the reagent
generated in situ by the action of sodium borohydride on
metallic selenium (Scheme 1).
(5) (a) Kricheldorf, H. R.; Leppert, E. Makromol. Chem. 1973, 167,
47–68. (b) Gonda, J.; Martinkova, M.; Walko, M.; Zavacka, E.;
Scheme 1. Preparation of Bis(9-fluorenylmethyl) Diselenide
ꢀ
ꢀ
ꢂꢃ
ꢀ
ꢃ
Budesınsky, M.; Cısarova, I. Tetrahedron Lett. 2001, 42, 4401–4404.
(c) Schoepfer, J.; Marquis, C.; Pasquier, C.; Neier, R. J. Chem. Soc.,
Chem. Commun. 1994, 1001–1002. (d) Crich, D.; Sasaki, K. Org. Lett.
2009, 11, 3514–3517. (e) Chen, W.; Shao, J.; Hu, M.; Yu, W.; Giulia-
notti, M. A.; Houghten, R. A.; Yu, Y. Chem. Sci. 2013, 4, 970–976.
(6) Wu, X.; Stockdill, J. L.; Wang, P.; Danishefsky, S. J. J. Am. Chem.
Soc. 2010, 132, 4098–4100.
(7) (a) Yamashiro, D.; Blake, J. F. Int. J. Pept. Prot. Chem. 1981, 18,
383–392. (b) Liu, C.-F.; Rao, C.; Tam, J. P. Tetrahedron Lett. 1996, 37,
933–936. (c) Yamashiro, D.; Li, C. H. Int. J. Pept. Prot. Res. 1988, 31,
322–334. (d) Høeg-Jensen, T.; Olsen, C. E.; Holm, A. J. Org. Chem.
1994, 59, 1257–1263. (e) Tam, J. P.; Lu, Y.-A.; Liu, C. F.; Shao, J. Proc.
Natl. Acad. Sci. U.S.A. 1995, 92, 12485–12489. (f) Mitin, Y. V.; Zape-
valova, N. P. Int. J. Pept. Prot. Chem. 1990, 35, 352–356. (g) Dyer, F. B.;
Park, C.-M.; Joseph, R.; Garner, P. J. Am. Chem. Soc. 2011, 133, 20033–
20035. (h) Joseph, R.; Dyer, F. B.; Garner, P. Org. Lett. 2013, 15, 732–
735. (i) Pan, J.; Devarie-Baez, N. O.; Xian, M. Org. Lett. 2011, 11, 1092–
1094. (j) Wu, W.; Zhang, Z.; Liebeskind, L. S. J. Am. Chem. Soc. 2011,
133, 14256–14259. (k) Mali, S. M.; Jadhav, S. V.; Gopi, H. N. Chem.
Commun. 2012, 48, 7085–7087. (l) Stockdill, J. L.; Wua, X.; Danishefsky,
S. J. Tetrahedron Lett. 2009, 50, 5152–5155. (m) Yuan, Y.; Zhu, J.; Li, X.;
Wu, X.; Danishefsky, S. J. Tetrahedron Lett. 2009, 50, 2329–2333. (n)
Wang, P.; Danishefsky, S. J. J. Am. Chem. Soc. 2010, 132, 17045–17051.
(o) Wang, P.; Li, X.; Zhu, J.; Chen, J.; Yuan, Y.; Wu, X.; Danishefsky,
S. J. J. Am. Chem. Soc. 2011, 133, 1597–1602. (p) Canne, L. E.; Botti, P.;
Simon, R. J.; Chen, Y.; Dennis, E. A.; Kent, S. B. H. J. Am. Chem. Soc.
1999, 121, 8720–8727.
Various amino acid based Fm selenoesters were then
prepared by reduction of the diselenide 2 with sodium
borohydride in ethanolic THF followed by reaction with
N-Boc-protected aminoacyl N-hydroxysuccinimides
(Table 1). These Fm selenoesters were isolated as white
or off-white solids in good yield following chromatogra-
phy over silica gel.
Table 1. Preparation of Fluorenylmethyl Selenoestersa
(8) Kato, S.; Murai, T.; Ishida, M. Org. Prep. Proc. Int. 1986,18, 369–427.
(9) Pearson, R. G.; Sobel, H. R.; Songstad, J. J. Am. Chem. Soc. 1968,
90, 319–326.
(10) (a) Knapp, S.; Darout, E. Org. Lett. 2005, 7, 203–206. (b) Wu,
X.; Hu, L. Tetrahedron Lett. 2005, 46, 8401–8405. (c) Surabhi, P.; Wu,
X.; Hu, L. Tetrahedron Lett. 2006, 47, 4609–4613. (d) Wu, X.; Hu, L.
J. Org. Chem. 2007, 72, 765–774.
entry
product
% yield
1
2
3
4
5
Boc-Phe-SeFm (3)
Boc-D-Phe-SeFm (4)
Boc-Val-SeFm (5)
77
74
81
75
60
(11) (a) Durek, T.; Alewood, P. F. Angew. Chem., Int. Ed. 2011, 50,
ꢀ
12042–12045. (b) Ghassemian, A.; Vila-Farres, X.; Alewood, P. F.;
Durek, T. Bioorg. Med. Chem. 2013, 21, 3473–3478.
(12) (a) Kojima, Y.; Ibi, K.; Kanda, T.; Ishihara, H.; Murai, T.; Kato,
S. Bull. Chem. Soc. Jpn. 1993, 66, 990–992. (b) Kawahara, Y.; Kato, S.;
Kanda, T.; Murai, T.; Ishihara, H. J. Chem. Soc., Chem. Commun. 1993,
277–278. (c) Koketsu, M.; Nada, F.; Hiramatsu, S.; Ishihara, H.
J. Chem. Soc., Perkin Trans. 1 2002, 737–740.
Boc-Ala-SeFm (6)
Boc-Asp-(γSeFm)-OBn (7)
a All AAs have the L-configuration unless otherwise indicated.
(13) Kawahara, Y.; Kato, S.; Kanda, T.; Murai, T. Bull. Chem. Soc.
Jpn. 1994, 67, 1881–1885.
(14) (a) Ishihara, H.; Hirabayashi, Y. Chem. Lett. 1976, 203–204. (b)
Kageyama, H.; Takagi, K.; Murai, T.; Kato, S. Z. Naturforsch. 1989,
44b, 1519–1523.
Subsequent treatment with trifluoroacetic acid in di-
chloromethane, followed by evaporation and trituration
with ether, gave the corresponding ammonium salts as
white solids (Table 2). Coupling with a N-Boc-protected
amino acid with the aid of O-benzotriazolyl tetramethy-
luronium hexafluorophosphate (HBTU) in the presence of
diisopropylethylamine (DIEA) then afforded a series of
(15) Ishihara, H.; Muto, S.; Kato, S. Synthesis 1986, 128–130.
ꢀ
~
(16) Gomez Castano, J. A.; Romano, R. M.; Beckers, H.; Willner,
ꢀ
H.; Boese, R.; Della Vedova, C. O. Angew. Chem., Int. Ed. 2008, 47,
10114–10118.
(17) Fitzmaurice, J. C.; Williams, D. J.; Wood, P. T.; Woollins, J. D.
J. Chem. Soc., Chem. Commun. 1988, 741–743.
B
Org. Lett., Vol. XX, No. XX, XXXX