ChemComm
Communication
S. L. Buchwald, J. Org. Chem., 2011, 76, 1174; (d) N. D. Ball, J. B. Gary,
Y. Ye and M. S. Sanford, J. Am. Chem. Soc., 2011, 133, 7577;
(e) C.-P. Zhang, Z.-L. Wang, Q.-Y. Chen, C.-T. Zhang, Y.-C. Gu and
J.-C. Xiao, Angew. Chem., Int. Ed., 2011, 50, 1896; ( f ) H. Morimoto,
T. Tsubogo, N. D. Litvinas and J. F. Hartwig, Angew. Chem., Int. Ed.,
2011, 50, 3793; (g) O. A. Tomashenko, E. C. Escudero, M. M. Belmonte
and V. V. Grushin, Angew. Chem., Int. Ed., 2011, 50, 7655; (h) Y. Ye,
S. A. Ku¨nzi and M. S. Sanford, Org. Lett., 2012, 14, 4979.
Scheme 2 Silver-catalysed radical trifluoromethylation.
3 Cu and Pd-catalysed trifluoromethylation of functionalised arenes:
(a) M. Oishi, H. Kondo and H. Amii, Chem. Commun., 2009, 1909;
(b) E. J. Cho, T. D. Senecal, T. Kinzel, Y. Zhang, D. A. Watson and
S. L. Buchwald, Science, 2010, 328, 1679; (c) R. Shimizu, H. Egami,
T. Nagi, J. Chae, Y. Hamashima and M. Sodeoka, Tetrahedron Lett.,
2010, 51, 5947; (d) T. Knauber, F. Arikan, G.-V. Roeschenthaler and
L. J. Goossen, Chem.–Eur. J., 2011, 17, 2689; (e) J. Xu, D.-F. Luo,
B. Xiao, Z.-J. Liu, T.-J. Gong, Y. Fu and L. Liu, Chem. Commun., 2011,
47, 4300; ( f ) T. Liu and Q. Shen, Org. Lett., 2011, 13, 2342; (g) Y. Ye
and M. S. Sanford, J. Am. Chem. Soc., 2012, 134, 9034;
(h) T. Schareina, X.-F. Wu, A. Zapf, A. Cotte, M. Gotta and
M. Beller, Top. Catal., 2012, 55, 426.
4 Recent C–H Trifluoromethylation of arenes: (a) M. S. Wiehn,
E. V. Vinogradova and A. Togni, J. Fluorine Chem., 2009, 131, 951;
(b) X. Wang, L. Truesdale and J.-Q. Yu, J. Am. Chem. Soc., 2010,
132, 3648; (c) Y. Ji, T. Brueckl, R. D. Baxter, Y. Fujiwara, I. B. Seiple,
S. Su, D. G. Blackmond and P. S. Baran, Proc. Natl. Acad. Sci. U. S. A.,
2011, 108, 14411; (d) D. A. Nagib and D. W. C. MacMillan, Nature,
2011, 480, 224; (e) R. N. Loy and M. S. Sanford, Org. Lett., 2011,
13, 2548; ( f ) X. Mu, S. Chen, X. Zhen and G. Liu, Chem.–Eur. J.,
2011, 17, 6039; (g) Y. Ye, S. H. Lee and M. S. Sanford, Org. Lett., 2011,
13, 5464; (h) L. Chu and F.-L. Qing, J. Am. Chem. Soc., 2012,
134, 1298; (i) E. Mejia and A. Togni, ACS Catal., 2012, 2, 521;
( j) Y. Fujiwara, J. A. Dixon, F. O’Hara, E. D. Funder, D. D. Dixon,
mechanism is shown in Scheme 2 whereby TMSCF3 is oxidised to
the CF3 radical, followed by SArH addition, then a second one
electron oxidation and proton loss to give the product 2. Control
experiments to investigate the role of silver in the first step of the
proposed mechanism indicated that AgF alone was insufficiently
ꢀ
oxidizing to generate CF3 (mixing AgF with TMSCF3 in the
presence of TEMPO in DMSO at room temperature gave only trace
quantities of TEMPO–CF3). PhI(OAc)2 alone was moderately effec-
tive (44% NMR yield of TEMPO–CF3) and the combination of
PhI(OAc)2 and AgF highly effective (91% NMR yield).14 The back-
ground oxidizing activity of the hypervalent iodine reagent could be
quantified in the trifluoromethylation of 1,4-dimethoxybenzene 1a
in the absence of any silver salt, producing a low conversion to the
trifluoromethylated product 2a (26% NMR yield).
Alternative mechanisms were investigated by treating dimethoxy-
anisole 1a with in situ prepared AgCF35b in both MeCN and DMSO
as solvents. No reaction could be observed in each case, suggesting
organometallic AgCF3 intermediates are not participating under
our reaction conditions. A further control experiment with Togni’s
reagent4a in DMSO at room temperature gave no reaction, ruling
out simple SEAr attack on an electrophilic CF3 source. Finally, we
considered the possibility of initial arene oxidation by PhI(OAc)2,
followed by CF3 anion addition to a cationic arene intermediate.
Extensive work by Kita has demonstrated the C–H functionaliza-
tion of electron rich arenes using PhI(TFA)2 in the presence of
stoichiometric BF3ÁOEt2 and nucleophiles.15 It seems the present
conditions are not sufficiently oxidizing to enable an analogous
pathway, as a control reaction in the absence of TMSCF3 gave no
reaction, where some degree of homocoupling would be expected if
this mechanism was in operation.
In conclusion, we have developed a silver-catalysed trifluoro-
methylation system for electron rich aromatic and hetero-
aromatic substrates. The reaction works at room temperature
under air, does not require excessive stoichiometries of sub-
strate or reagent, and is operationally simple to carry out. The
application of this chemistry to new trifluoromethylation sub-
strates will be the subject of future work in our laboratory.
We thank Syngenta, the University of Manchester and the
EPSRC for funding (Leadership Fellowship to M.F.G.), and the
EPSRC mass spectrometry service at the University of Swansea.
´
R. A. Rodriguez, R. D. Baxter, B. Herle, N. Sach, M. R. Collins,
Y. Ishihara and P. S. Baran, Nature, 2012, 492, 95; (k) A. Hafner and
¨
S. Brase, Angew. Chem., Int. Ed., 2012, 51, 3713; (l) X.-G. Zhang,
H.-X. Dai, M. Wasa and J.-Q. Yu, J. Am. Chem. Soc., 2012, 134, 11948;
(m) X. Wu, L. Chu and F.-L. Qing, Tetrahedron Lett., 2013, 54, 249.
5 (a) W. E. Tyrra, J. Fluorine Chem., 2001, 112, 149; (b) M. M. Kremlev,
A. I. Mushta, W. E. Tyrra, D. Naumann, H. T. M. Fischer and
Y. L. Yagupolskii, J. Fluorine Chem., 2007, 128, 1385; (c) Z. Weng,
R. Lee, W. Jia, Y. Yuan, W. Wang, X. Feng and K.-W. Huang,
Organometallics, 2011, 30, 3229.
6 Silver in organic chemistry, ed. M. Harmata, Wiley, NY, 2010.
7 For silver-catalysed fluorination, see: P. Tang, T. Furuya and
T. Ritter, J. Am. Chem. Soc., 2010, 132, 12150.
8 (a) S. Seo, M. Slater and M. F. Greaney, Org. Lett., 2012, 14, 2650;
(b) S. Seo, J. B. Taylor and M. F. Greaney, Chem. Commun., 2012,
48, 8270.
9 G. K. S. Prakash and A. K. Yudin, Chem. Rev., 1997, 97, 757.
10 T. Akiyama, K. Kato, M. Kajitani, Y. Sakaguchi, J. Nakamura,
H. Hayashi and A. Sugimori, Bull. Chem. Soc. Jpn., 1988, 61, 3531.
11 C. Luthy, H. Zondler, T. Rapold, G. Seifert, B. Urwyler, T. Heinis,
H. C. Steinrucken and J. Allen, Pest Manage. Sci., 2001, 57, 205.
12 Stauffer Chemical Company, Br. Pat., GB1066606, 1967.
13 Examples of radical trifluoromethylation: (a) A. Gregorcic and
M. Zupan, J. Org. Chem., 1979, 44, 4120; (b) C. Wakselman and
M. Tordeux, Chem. Commun., 1987, 1701; (c) H. Sawada,
M. Nakayama, M. Yoshida, T. Yoshida and N. Kamigata,
J. Fluorine Chem., 1990, 46, 423; (d) B. R. Langlois, E. Laurent and
N. Roidot, Tetrahedron Lett., 1991, 32, 7525; (e) K. L. Kirk,
M. Nishida, S. Fujii and H. Kimoto, J. Fluorine Chem., 1992,
59, 197; ( f ) C. Lai and T. E. Mallouk, Chem. Commun., 1993, 1359;
(g) N. Kamigata, T. Ohtsuka, T. Fukushima, M. Yoshida and
T. Shimizu, J. Chem. Soc., Perkin Trans. 1, 1994, 1339;
´
(h) J.-B. Tommasino, A. Brondex, M. Medebielle, M. Thomalla,
B. R. Langlois and T. Billard, Synlett, 2002, 1697; (i) T. Kino,
Y. Nagase, Y. Ohtsuka, K. Yamamoto, D. Uraguchi, K. Tokuhisa
and T. Yamakawa, J. Fluorine Chem., 2010, 131, 98.
Notes and references
1 (a) A. Studer, Angew. Chem., Int. Ed., 2012, 51, 8950; (b) O. A.
Tomashenko and V. V. Grushin, Chem. Rev., 2011, 111, 4475;
(c) T. Furuya, A. S. Kamlet and T. Ritter, Nature, 2011, 473, 470.
2 Recent examples of stoichiometric metal-mediated trifluoromethyla-
tion: (a) K. A. McReynolds, R. S. Lewis, L. K. G. Ackerman,
G. G. Dubinina, W. W. Brennessel and D. A. Vicic, J. Fluorine Chem.,
2010, 131, 1108; (b) Y. Ye, N. D. Ball, J. W. Kampf and M. S. Sanford,
J. Am. Chem. Soc., 2010, 132, 14682; (c) T. D. Senecal, A. T. Parsons and
14 ArI(OAc)2 could potentially generate Ag(II) as the oxidant for TMSCF3
in situ under the reaction conditions. For in situ silver(II) generation
from catalytic Ag(I) and a stoichiometric oxidant in decarboxylation
chemistry, see: J. M. Anderson and J. K. Kochi, J. Am. Chem. Soc.,
1970, 92, 1651.
15 T. Dohi, M. Ito, N. Yamaoka, K. Morimoto, H. Fujioka and Y. Kita,
Tetrahedron, 2009, 65, 10797.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 6385--6387 6387