Scheme 1. Synthesis of CF3-Substituted Allenes 5aÀ5fa
Table 1. Selected Optimization Experiments in the Ruthenium
Catalyzed Reductive Coupling of CF3-Substituted Allene 5a
and Paraformaldehydea
entry
[Ru]
ligand
yield %
6a:7a
RuBr(CO)3(B3-C3H5)
RuH2(CO)(PPh3)3
RuHCl(CO)(PPh3)3
RuTFA2(CO)(PPh3)2
RuTFA2(CO)(PPh3)2
RuHCl(CO)(PPh3)3
RuHCl(CO)(PPh3)3
RuHCl(CO)(PPh3)3
RuHCl(CO)(PPh3)3
RuHCl(CO)(PPh3)3
RuHCl(CO)(PPh3)3
RuHCl(CO)(PPh3)3
RuHCl(CO)(PPh3)3
RuHCl(CO)(PPh3)3
RuHCl(CO)(PPh3)3
RuHCl(CO)(PPh3)3
t-BuPPh2
À
12
18
37
41
40
68
37
58
74
78
70
35
70
68
67
31
20:1
>20:1
12:1
13:1
1:4
b
1
2
3
À
4
À
5
DPPF
DPPF
DiPPF
DtBPF
DPPM
DPPM
DPPE
DPPP
DPPB
DCyPM
DCyPE
BINAP
6
12:1
>20:1
>20:1
20:1
20:1
9:1
7
8
9
10
11
12
13
14
15
16
3:1
1:4
10:1
17:1
10:1
a Yields are of material isolated by silica gel chromatography or
distillation. See Supporting Information for further details.
a Yields are of material isolated by silica gel chromatography. Ratios
of 6:7 were determined by 19F NMR analyses of crude reaction mixtures.
DCyPM = 1,1-bis(dicyclohexylphosphino)methane, DCyPE = 1,1-
bis(dicyclohexylphosphino)ethane. See Supporting Information for li-
gand definitions and experimental details. b t-BuPPh2 (15 mol %).
Our study required a method for the synthesis of 1-aryl-
1-trifluoromethylallenes. Although syntheses involving
propargyl substitution using CF3 nucleophiles are
reported,10 these methods do not permit formation of
1-aryl-1-trifluoromethylallenes. Syntheses involving intro-
duction of the CF3 group at an early stage have been
reported, but do not employ readily accessible starting
materials and are not step-economic.11 Classical strategies
for allene synthesis, such as the DoeringÀLaFlamme
method,12 were unsuccessful. Hence, an effective protocol
for the synthesis of 1-aryl-1-trifluoromethylallenes was
developed (Scheme 1). CoreyÀFuchs olefination of the
aryl trifluoromethyl ketones 1aÀ1f13 delivers the corre-
sponding methylene dibromides 2aÀ2f. Lithiation14 of the
resulting methylene dibromides 2aÀd followed by treat-
ment with paraformaldehyde and quenching with metha-
nesulfonyl chloride delivers the allylic sulfonates 4aÀ4d,
which appear as single geometrical isomers. The allylic
sulfonates 4aÀ4d were converted to the corresponding
allylic bromides in situ and then exposed to zinc dust15 to
form allenes 5aÀ5d in good isolated yields. The vinyl-
lithium species derived from methylene dibromides2e,f did
not react efficiently with paraformaldehyde, but could be
methylated in good yield to form adducts 3e,f as single
geometrical isomers. Allylic bromination, which occurs
(6) (a) Ngai, M.-Y.; Skucas, E.; Krische, M. J. Org. Lett. 2008, 10,
2705. (b) Smejkal, T.; Han, H.; Breit, B.; Krische, M. J. J. Am. Chem.
Soc. 2009, 131, 10366. (c) Bausch, C. C.; Patman, R. L.; Breit, B.;
€
Krische, M. J. Angew. Chem., Int. Ed. 2011, 50, 5687. (d) Kopfer, A.;
Sam, B.; Breit, B.; Krische, M. J. Chem. Sci. 2013, 4, 1876.
(7) Organofluorine compounds represent over 20% of approved
pharmaceutical agents and 30À40% of commercially available agro-
chemicals: (a) Thayer, A. M. Chem. Eng. News 2006, 84, 15. (b) Mueller,
K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881. (c) Thayer, A. M.
Chem. Eng. News 2007, 85, 11. (d) 80% of the small molecule drugs
entering the market are estimated to contain one or more chiral centers:
Carey, J. S.; Laffan, D.; Thomson, C.; Williams, M. T. Org. Biomol.
Chem. 2006, 4, 2337. (e) Farina, V.; Reeves, J. T.; Senanayake, C. H.;
Song, J. J. Chem. Rev. 2006, 106, 2734.
(8) CF3-bearing all-carbon quaternary stereocenters are uncommon:
(a) Fuchigami, T.; Nakagawa, Y. J. Org. Chem. 1987, 52, 5276. (b)
Gosmini, C.; Rollin, Y.; Perichon, J.; Wakselman, C.; Tordeux, M.;
Marival, L. Tetrahedron 1997, 53, 6027. (c) Hiraoka, S.; Yamazaki, T.;
Kitazume, T. Chem. Commun. 1997, 1497. (d) Sato, K.; Takiguchi, Y.;
Yoshizawa, Y.; Iwase, K.; Shimizu, Y.; Tarui, A.; Omote, M.; Kumadaki,
I.; Ando, A. Chem. Pharm. Bull. 2007, 55, 1593. (e) Kimura, M.;
Yamazaki, T.; Kitazume, T.; Kubota, T. Org. Lett. 2004, 6, 4651.
(9) For preparation of organofluorine substructures via iridium
catalyzed CÀC bond forming transfer hydrogenation, see: (a) Gao,
X.; Zhang, Y. J.; Krische, M. J. Angew. Chem., Int. Ed. 2011, 50, 4173.
(b) Hassan, A.; Montgomery, T. P.; Krische, M. J. Chem. Commun.
2012, 4692.
(11) (a) Werner, H.; Laubender, M.; Wiedemann, R.; Windmuller, B.
Angew. Chem., Int. Ed. Engl. 1996, 35, 1237. (b) Werner, H.; Wiedemann,
R.; Laubender, M.; Windmuller, B.; Steinet, P.; Gevert, O.; Wolf, J.
J. Am. Chem. Soc. 2002, 124, 6966. (c) Han, H. Y.; Kim, M. S.; Son, J. B.;
Jeong, I. H. Tetrahedron Lett. 2006, 47, 209.
(12) Doering, W. v. E.; LaFlamme, P. M. Tetrahedron 1958, 2, 75.
(13) (a) Morken, P. A.; Baenziger, N. C.; Burton, D. J.; Bachand,
P. C.; Davis, C. R.; Pedersen, S. D.; Hansen, S. W. J. Chem. Soc., Chem.
Commun. 1991, 566. (b) Morken, P. A.; Bachand, P. C.; Swenson, D. C.;
Burton, D. J. J. Am. Chem. Soc. 1993, 115, 5430. (c) Uno, H.; Nibu, N.;
Misobe, N. Bull. Chem. Soc. Jpn. 1999, 72, 1365.
(14) Li, Y.; Lu, L.; Zhao, X. Org. Lett. 2004, 6, 4467.
(15) Lin, M.-H.; Tsai, W.-S.; Lin, L.-Z.; Hung, S.-F.; Chuang, T.-H.;
Su, Y.-J. J. Org. Chem. 2011, 76, 8518.
(10) (a) Burton, D. J.; Hartgraves, G. A.; Hsu, J. Tetrahedron Lett.
1990, 31, 3699. (b) Wiemers, D. M.; Burton, D. J. J. Am. Chem. Soc.
1986, 108, 832. (c) Zhao, T. S. N.; Szabo, K. J. Org. Lett. 2012, 14, 3966.
B
Org. Lett., Vol. XX, No. XX, XXXX