ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Catalytic Decarboxylative Alkenylation
of Enolates
†
Sybrin P. Schroder, Nicholas J. Taylor, Paula Jackson, and Vilius Franckevicius*
†
†
,‡
€
ꢀ
Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K., and
Department of Chemistry, Lancaster University, Lancaster LA1 4YB, U.K.
Received June 20, 2013
ABSTRACT
A palladium-catalyzed decarboxylative alkenylation of stabilized enolates has been developed, which gives rise to alkenylated dicarbonyl
products from enol carbonates regioselectively with concomitant installation of a quaternary all-carbon center. The broad scope of the reaction
has been demonstrated by successfully utilizing a range of enolates and external phenol nucleophiles.
Over the past decade, the transition-metal-catalyzed decar-
boxylative coupling of organic molecules has grown into a
versatile synthetic tool, offering atom-economical and waste-
minimized alternatives to conventional cross-coupling.1
One practical approach to generating sterically congested
sp3 centers is the palladium-catalyzed intramolecular dec-
arboxylative allylation of enolates (Scheme 1),2 which
proceeds via π-allylpalladium(II) enolate2 under very mild
and neutral conditions without the need for external base.3
This pioneering work has resulted in the development of a
number of elegant enantioselective approaches for the
decarboxylative allylation of enolates,4 generating an
all-carbon quaternary stereogenic center. In contrast, the
structurally similar propargylic counterparts 4 are known
to provide η3-π-allenylpalladium(II) intermediates 5 with
palladium catalysis.5 In particular, if the η3-π-allenyl-
palladium(II) unit is unsymmetrical, enolate addition at
either C-1 or C-3 in 5 can in principle take place, resulting
in the formation of either propargylated or allenylated
products 6 or 7, respectively.6
† University of York.
‡ Lancaster University.
(1) For reviews, see: (a) Goossen, L. J.; Rodrı
Angew. Chem., Int. Ed. 2008, 47, 3100–3120. (b) Rodrı
L. J. Chem. Soc. Rev. 2011, 40, 5030–5048.
(5) (a) Tsuji, J.; Watanabe, H.; Minami, I.; Shimizu, I. J. Am. Chem.
Soc. 1985, 107, 2196–2198. (b) Tsuji, J.; Mandai, T. Angew. Chem., Int.
Ed. Engl. 1995, 34, 2589–2612. (c) Ma, S. M. Eur. J. Org. Chem. 2004,
1175–1183.
´
guez, N.; Goossen, K.
´
guez, N.; Goossen,
ꢁ
(2) For reviews, see: (a) Tunge, J. A.; Burger, E. C. Eur. J. Org. Chem.
2005, 1715–1726. (b) Mohr, J. T.; Stoltz, B. M. Chem. Asian J. 2007, 2,
1476–1491. (c) Weaver, J. D.; Recio, A.; Grenning, A. J.; Tunge, J. A.
Chem. Rev. 2011, 111, 1846–1913.
(6) (a) Bienayme, H. Tetrahedron Lett. 1994, 35, 7383–7386. (b)
ꢁ
Bienayme, H. Tetrahedron Lett. 1994, 35, 7387–7390. (c) Behenna,
D. C.; Mohr, J. T.; Sherden, N. H.; et al. Chem.;Eur. J. 2011, 17,
14199–14223.
(3) (a) Shimizu, I.; Yamada, T.; Tsuji, J. Tetrahedron Lett. 1980, 21,
3199–3202. (b) Tsuda, T.; Chujo, Y.; Nishi, S.; Tawara, K.; Saegusa, T.
J. Am. Chem. Soc. 1980, 102, 6381–6384.
(7) Guo, L.-N.; Duan, X.-H.; Liang, Y.-M. Acc. Chem. Res. 2011, 44,
111–122.
(8) For selected examples, see: (a) Labrosse, J. R.; Lhoste, P.; Sinou,
D. J. Org. Chem. 2001, 66, 6634–6642. (b) Zong, K. W.; Abboud, K. A.;
Reynolds, J. R. Tetrahedron Lett. 2004, 45, 4973–4975. (c) Ambrogio, I.;
Cacchi, S.; Fabrizi, G. Org. Lett. 2006, 8, 2083–2086. (d) Cacchi, S.;
Fabrizi, G.; Filisti, E.; Goggiamani, A.; Iazzetti, A.; Maurone, L. Org.
Biomol. Chem. 2012, 10, 4699–4703. (e) Duan, X.-H.; Guo, L.-N.; Bi,
H.-P.; Liu, X.-Y.; Liang, Y.-M. Org. Lett. 2006, 8, 5777–5780. (f) Yoshida,
M.; Higuchi, M.; Shishido, K. Org. Lett. 2009, 11, 4752–4755. (g)
Yoshida, M.; Sugimura, C.; Shishido, K. Org. Lett. 2011, 13, 3482–
3485. (h) Ohno, H.; Okano, A.; Kosaka, S.; Tsukamoto, K.; Ohata, M.;
Ishihara, K.; Maeda, H.; Tanaka, T.; Fujii, N. Org. Lett. 2008, 10, 1171–
1174. (i) Nishioka, N.; Koizumi, T. Tetrahedron Lett. 2011, 52, 3662–
3665.
(4) For selected examples, see: (a) Burger, E. C.; Tunge, J. A. Org.
Lett. 2004, 6, 4113–4115. (b) Weaver, J. D.; Ka, B. J.; Morris, D. K.;
Thompson, W.; Tunge, J. A. J. Am. Chem. Soc. 2010, 132, 12179–12181.
(c) Trost, B. M.; Xu, J. Y. J. Am. Chem. Soc. 2005, 127, 2846–2847. (d)
Behenna, D. C.; Stoltz, B. M. J. Am. Chem. Soc. 2004, 126, 15044–15045.
(e) Mohr, J. T.; Behenna, D. C.; Harned, A. M.; Stoltz, B. M. Angew.
Chem., Int. Ed. 2005, 44, 6924–6927. (f) Behenna, D. C.; Liu, Y. Y.;
Yurino, T.; Kim, J.; White, D. E.; Virgil, S. C.; Stoltz, B. M. Nature Chem.
2012, 4, 130–133. (g) Nakamura, M.; Hajra, L.; Endo, K.; Nakamura, E.
ꢀ
Angew. Chem., Int. Ed. 2005, 44, 7248–7251. (h) Franckevicius, V.;
Cuthbertson, J. D.; Pickworth, M.; Pugh, D. S.; Taylor, R. J. K. Org. Lett.
2011, 13, 4264–4267.
r
10.1021/ol401729m
XXXX American Chemical Society