J. A. A. W. Elemans, A. E. Rowan, R. J. M. Nolte and R. G. E. Coumans
A
E
G
Lai, Y.-H. Liu, S.-M. Peng, S.-H. Chiu, Angew. Chem. 2012, 124,
10241; Angew. Chem. Int. Ed. 2012, 51, 10094.
5J
E
3J
R
[2] a) C. P. Collier, G. Mattersteig, E. W. Wong, Y. Luo, K. Beverly, J.
Sampaio, F. M. Raymo, J. F. Stoddart, J. R. Heath, Science 2000, 289,
1172; b) Y. Luo, C. P. Collier, J. O. Jeppesen, K. A. Nielsen, E. De-
lonno, G. Ho, J. Perkins, H. R. Tseng, T. Yamamoto, J. F. Stoddart,
J. R. Heath, ChemPhysChem 2002, 3, 519.
(thread)), 7.04–6.97 (m, 6H; H1, H2), 6.94–6.89 (m, 4H; H3), 6.85 (d, J-
(H,H)=1.6 Hz, 4H; ortho-ArH (thread)), 6.13 (d, 3J
(H,H)=6.1 Hz, 4H;
BipyH), 6.07 (s, 4H; H5), 4.90 (d, 3J
(H,H)=6.1 Hz, 4H; BipyH), 4.40–
4.35 (m, 4H; H7), 4.28 (d, 2J
(H,H)=15.9 Hz, 4H; H4), 4.05–3.95 (m,
4H; H7), 4.05 (t, 3J(H,H)=6.0 Hz, 4H; OCH2 (thread)), 3.73 (d, 2J-
(H,H)=15.8 Hz, 4H; H4), 3.56–3.46 (m, 4H; H6), 3.32 (bt, 4H;
BipyCH2), 2.82–2.73 (m, 4H; H6), 1.85 (q, 3J
(H,H)=7.2 Hz, 4H; CH2
R
ACHTUNGTRENNUNG
AHCTUNGTRENNUNG
AHCTUNGTRENNUNG
ACHTUNGTRENNUNG
[3] a) T. J. Huang, B. Brough, C. M. Ho, Y. Liu, A. H. Flood, P. A. Bon-
vallet, H. R. Tseng, J. F. Stoddart, M. Baller, S. Magonov, Appl.
Phys. Lett. 2004, 85, 5391; b) Y. Liu, A. H. Flood, P. A. Bonvallett,
S. A. Vignon, B. H. Northrop, H. R. Tseng, J. O. Jeppesen, T. J.
Huang, B. Brough, M. Baller, S. Magonov, S. D. Solares, W. A. God-
dard, C. M. Ho, J. F. Stoddart, J. Am. Chem. Soc. 2005, 127, 9745.
[4] Interlocked molecules are not the only excellent candidates for the
bottom-up approach in nanotechnology, for example, see: a) N. Kou-
mura, R. W. J. Zijlstra, R. A. van Delden, N. Harada, B. L. Feringa,
Nature 1999, 401, 152; b) V. Balzani, A. Credi, F. M. Raymo, J. F.
Stoddart, Angew. Chem. 2000, 112, 3484; Angew. Chem. Int. Ed.
2000, 39, 3348; c) K. Kinbara, T. Aida, Chem. Rev. 2005, 105, 1377;
d) A. Kocer, M. Walko, W. Meijberg, B. L. Feringa, Science 2005,
309, 755. W. R. Browne, B. L. Feringa, Nat. Nanotechnol. 2006, 1,
25; e) K. Miwa, Y. Furusho, E. Yashima, Nat. Chem. 2010, 2, 444.
[5] A. M. Turing, Proc. London Math. Soc. 1937, 42, 230.
ACHTUNGTRENNUNG
AHCTUNGTRENNUNG
(thread)), 1.60–1.50 (m, 4H; CH2 (thread)), 1.42–1.20 (m, 8H; CH2
(thread)), 1.35 (s, 36H; CCH3), 1.10 (bs, 4H; CH2 (thread)), 0.94 (bs,
4H; CH2 (thread)), À2.82 ppm (s, 2H; H14); 13C NMR (CDCl3,
125 MHz) d=158.7, 158.5, 158.2, 152.2, 146.2, 145.0, 142.5, 135.6, 132.7,
131.2, 130.6, 130.1, 129.1, 128.8, 128.0, 126.0, 123.2, 121.5, 120.5, 116.5,
114.8, 112.2, 85.4, 68.4, 67.6, 67.3, 64.3, 61.7, 50.8, 44.0, 43.5, 35.0, 31.5,
29.5, 29.1, 28.9, 28.8, 26.1, 26.0 ppm. IR (KBr) n˜ =3455, 2951, 2862, 1701,
1636, 1594, 1521, 1473, 1363, 1301, 1249, 1217, 1121, 1061, 968, 845, 708,
558 cmÀ1; MS (MALDI-TOF): m/z 2280.6 [MÀPF6]+, 2135.6 [MÀ2PF6]+.
[2]Rotaxane 20: Compounds 14 (22 mg, 50 mmol), 17 (22 mg, 33 mmol)
and 1 (8.5 mg, 6.3 mmol) were suspended in argon-flushed DMF (3 mL).
The mixture was heated under argon at 1208C for 5 days. After cooling,
the product was dissolved in CHCl3 (5 mL).
[6] a) P. Thordarson, E. J. A. Bijsterveld, A. E. Rowan, R. J. M. Nolte,
Nature 2003, 424, 915; b) C. Monnereau, P. Hidalgo Ramos, A. B. C.
Deutman, J. A. A. W. Elemans, R. J. M. Nolte, A. E. Rowan, J. Am.
Chem. Soc. 2010, 132, 1529.
[7] P. Thordarson, R. G. E. Coumans, J. A. A. W. Elemans, P. J. Thomas-
sen, J. Visser, A. E. Rowan, R. J. M. Nolte, Angew. Chem. 2004, 116,
4859; Angew. Chem. Int. Ed. 2004, 43, 4755.
[8] a) R. G. E. Coumans, J. A. A. W. Elemans, R. J. M. Nolte, A. E.
Rowan, Proc. Natl. Acad. Sci. USA 2006, 103, 19647; b) P. Hidal-
go Ramos, R. G. E. Coumans, A. B. C. Deutman, R. de Gelder,
J. M. M. Smits, J. A. A. W. Elemans, R. J. M. Nolte, A. E. Rowan, J.
Am. Chem. Soc. 2007, 129, 5699; c) A. B. C. Deutman, C. Monner-
eau, J. A. A. W. Elemans, G. Ercolani, R. J. M. Nolte, A. E. Rowan,
Science 2008, 322, 1668.
[9] R. G. E. Coumans, J. A. A. W. Elemans, P. Thordarson, R. J. M.
Nolte, A. E. Rowan, Angew. Chem. 2003, 115, 674; Angew. Chem.
Int. Ed. 2003, 42, 650.
[10] J. A. A. W. Elemans, M. B. Claase, P. P. M. Aarts, A. E. Rowan,
A. P. H. J. Schenning, R. J. M. Nolte, J. Org. Chem. 1999, 64, 7009.
[11] a) B. Mohr, J.-P. Sauvage, R. H. Grubbs, M. Weck, Angew. Chem.
1997, 109, 1365; Angew. Chem. Int. Ed. Engl. 1997, 36, 1308; b) T. J.
Kidd, D. A. Leigh, A. J. Wilson, J. Am. Chem. Soc. 1999, 121, 1599;
c) P. Mobian, J. M. Kern, J.-P. Sauvage, J. Am. Chem. Soc. 2003, 125,
2016; d) A. F. M. Kilbinger, S. J. Cantrill, A. W. Waltman, M. W.
Day, R. H. Grubbs, Angew. Chem. 2003, 115, 3403; Angew. Chem.
Int. Ed. 2003, 42, 3281; e) G. Kaiser, S. Jarrosson, S. Otto, Y. F. Ng,
A. D. Bond, J. K. M. Sanders, Angew. Chem. 2004, 116, 1993;
NH4PF6 solution (5 mL) was added and the mixture was stirred vigorous-
ly for 2 h. The organic layer was separated, washed with water, and
evaporated to dryness. The crude product was purified by column chro-
matography (first column: Silica 60H, 2% MeOH in CHCl3, v/v; second
column: size exclusion, toluene) to give 20 (6 mg, 38%) as a purple solid.
1
M.p.>3008C (decomposed); H NMR (CDCl3, 300 MHz) d=9.07 (s, 4H;
H12), 8.79 (s, 4H; H13), 8.11 (dd, 3J(H,H)=7.4 Hz, 5J
ACTHNUGTRENNUGN ACHTUNGTRENNNUG
3
5
4H; H11), 7.83 (dt, J
3J
(H,H)=7.4 Hz, 4H; H9), 7.42 (d, J
(H,H)=1.5 Hz, 2H; para-ArH (thread)), 7.05–6.99 (m, 6H; H1, H2),
6.95–6.88 (m, 4H; H3), 6.81 (d, 5J
(H,H)=1.6 Hz, 4H; ortho-ArH
(thread)), 6.14 (d, 3J
(H,H)=6.1 Hz, 4H; BipyH), 6.08 (s, 4H; H5), 4.89
(bs, 4H; BipyH), 4.39–4.30 (m, 4H; H7), 4.28 (d, 2J
(H,H)=15.9 Hz, 4H;
H4), 4.10–4.00 (m, 4H; H7), 4.03 (t, 3J
(H,H)=6.0 Hz, 4H; OCH2
(thread)), 3.74 (d, 2J
(H,H)=15.8 Hz, 4H; H4), 3.58–3.49 (m, 4H; H6),
ACHTUNGTRENNUNG(H,H)=8.0 Hz, JACHTNUGTRENNUNG
3
5
N
ACHTUNGTRNE(NUNG H,H)=8.5 Hz, 4H; H8), 7.03 (t, J-
ACHTUNGTRENNUNG
AHCTUNGTRENNUNG
ACHTUNGTRENNUNG
AHCTUNGTRENNUNG
AHCTUNGTRENNUNG
ACHTUNGTRENNUNG
3.32 (bs, 4H; BipyCH2), 2.84–2.75 (m, 4H; H6), 1.87–0.8 (m, 36H; CH2
(thread)) 1.33 (s, 36H; CCH3), À2.81 ppm (s, 2H; H14); 13C NMR
(CDCl3, 125 MHz) d=158.7, 152.1, 146.2, 145.2, 142.4, 135.6, 132.9, 131.2,
130.6, 130.2, 128.7, 128.1, 123.5, 120.4, 116.6, 116.4, 114.8, 112.2, 108.8,
85.4,68.5, 67.8, 67.4, 44.0, 35.0, 31.5, 30.4, 29.6, 29.4, 28.8, 26.3 ppm; IR
(KBr) n˜ =3455, 2957, 2871, 1700, 1663, 1558, 1545, 1436, 1419, 1384,
1248, 1121, 1064, 968, 844, 668, 558 cmÀ1; MS (MALDI-TOF): m/z 2364.3
[MÀPF6]+, 2219.4 [MÀ2PF6]+.
Acknowledgements
´
Angew. Chem. Int. Ed. 2004, 43, 1959; f) J. D. Badjic, S. J. Cantrill,
This research was supported by the European Research Council in the
form of an ERC Starting grant for J.A.A.W.E (NANOCAT-259064) and
an ERC Advanced grant for R.J. M.N. (ALPROS-290886). The Dutch
National Research School for Combination Catalysis (NRSC-C) is ac-
knowledged for financial support to R.G.E.C and R.J.M.N. Further finan-
cial support was obtained from the Council for the Chemical Sciences of
the Netherlands Organization for Scientific Research (CW-NWO) (Vidi
grant for J.A.A.W.E and Vici grant for A.E.R) and from the Ministry of
Education, Culture and Science (Gravity program 024.001.035).
R. H. Grubbs, E. N. Guidry, R. Orenes, J. F. Stoddart, Angew. Chem.
2004, 116, 3335; Angew. Chem. Int. Ed. 2004, 43, 3273; g) P. G.
Clark, E. N. Guidry, W. Y. Chan, W. E. Steinmetz, R. H. Grubbs, J.
Am. Chem. Soc. 2010, 132, 3405; h) V. N. Vukotic, K. J. Harris, K.
Zhu, R. W. Schurko, S. J. Loeb, Nat. Chem. 2012, 4, 456; i) G. T.
Spence, P. D. Beer, Acc. Chem. Res. 2013, 46, 571.
[12] For some examples of other porphyrin containing catenanes, see:
a) M. J. Gunter, D. C. R. Hockless, M. R. Johnston, B. W. Skelton,
A. H. White, J. Am. Chem. Soc. 1994, 116, 4810; b) M. Linke, N.
Fujita, J. C. Chambron, V. Heitz, J.-P. Sauvage, New J. Chem. 2001,
25, 790; c) M. J. Gunter, S. M. Farquhar, Org. Biomol. Chem. 2003,
1, 3450; d) M. Beyler, V. Heitz, J.-P. Sauvage, Chem. Commun. 2008,
5396; e) M. J. Langton, J. D. Matichak, A. L. Thompson, H. L. An-
derson, Chem. Sci. 2011, 2, 1897.
[13] A similar statistical approach to the synthesis of simple molecular
necklaces by using Glaser–Hay coupling has been reported, see: F.
Bitsch, C. O. Dietrich-Buchecker, J. P. Khemiss, J.-P. Sauvage, A.
Van Dorsselaer, J. Am. Chem. Soc. 1991, 113, 4023.
[1] a) K. Kim, Chem. Soc. Rev. 2002, 31, 96; b) S. J. Cantrill, K. S. Chi-
chak, A. J. Peters, J. F. Stoddart, Acc. Chem. Res. 2005, 38, 1; c) J. D.
Crowley, S. M. Goldup, A.-L. Lee, D. A. Leigh, R. T. McBurney,
Chem. Soc. Rev. 2009, 38, 1530; d) R. S. Forgan, J.-P. Sauvage, J. F.
Stoddart, Chem. Rev. 2011, 111, 5434; e) From Non-covalent Assem-
blies to Molecular Machines (Eds.: J.-P. Sauvage and P. Gaspard),
Wiley-VCH, Weinheim, 2011; f) C.-F. Chang, C.-J. Chuang, C.-C.
&
12
&
ꢀ 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 0000, 00, 0 – 0
ÝÝ
These are not the final page numbers!