ChemComm
Communication
As indicated in the introductory section, the s–p conjugation
between the Si centre and arenes could account for the fast
electron transport. Another possibility is that an electron goes
through the three benzenethiol legs in Au–[AT(FeLH)nÀ1FeT1]. We
reported previously that doubly-anchored biferrocene on an
Au(111) surface through Au–S bonds underwent a faster inter-
facial electron transfer than in the singly-anchored case.12
In conclusion, we designed and synthesised tripodal terpyridine
ligand AT (AT–Ac). The SAM formation of AT on a gold electrode
surface was optimized to ensure that all S atoms of AT were
chemisorbed. We constructed bis(terpyridine)–Fe(II) oligomer wires
on the SAM of AT, the orthogonality of which was confirmed by
means of AFM and cross-sectional SEM. AT realised fast intrawire
electron transfer behaviour, showing a large k0et value.
Fig. 5 Cross-sectional SEM image of Au–[AT(FeLH)40].
The authors acknowledge Grants-in-Aid from MEXT of Japan
(No. 24750054, 21108002, and 25107510, and areas 2107 [Coordina-
tion Programming] and 2406 [All Nippon Artificial Photosynthesis
Project for Living Earth]), and a JSPS Research Fellowship for Young
Scientists. R. S. is grateful to the Tokuyama Science Foundation, and
the Iketani Science and Technology Foundation for financial support.
Notes and references
Fig. 6 ln ket–d plots for Au–[AT(FeLH)nÀ1FeT1] (red) and Au–[A2(FeLH)nÀ1FeT1]
(green). Dashed lines were obtained by least-squares fitting and solid lines by
fitting assuming that both plots had the same slope (À0.018 ÅÀ1).
1 (a) J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo and G. M. Whitesides,
Chem. Rev., 2005, 105, 1103; (b) C. Vericat, M. E. Vela, G. Benitez, P. Carro
and R. C. Salvarezza, Chem. Soc. Rev., 2010, 39, 1805.
2 (a) S. H. Choi, B. Kim and C. D. Frisbie, Science, 2008, 320, 1482;
(b) A. J. Kronemeijer, E. H. Huisman, H. B. Akkerman, A. M. Goossens,
I. Katsouras, P. A. van Hal, T. C. T. Geuns, S. J. van der Molen,
P. W. M. Blom and D. M. de Leeuw, Appl. Phys. Lett., 2010, 97, 17287;
(c) Z. Li, T.-H. Park, J. Rawson, M.-J. Therien and E. Borguet, Nano
Lett., 2012, 12, 2722.
3 (a) C. Lambert and V. Kriegish, Langmuir, 2006, 22, 8807;
(b) P. A. Brooksby, K. H. Anderson, A. J. Downard and D. Abell,
Langmuir, 2010, 26, 1334; (c) Y. Arikuma, H. Nakamura, T. Morita
and S. Kimura, Langmuir, 2011, 27, 1530.
4 (a) Y. Nishimori, K. Kanaizuka, M. Murata and H. Nishihara,
Chem.–Asian J., 2007, 2, 367; (b) H. Nishihara, K. Kanaizuka,
Y. Nishimori and Y. Yamanoi, Coord. Chem. Rev., 2007, 251, 2674;
(c) Y. Nishimori, K. Kanaizuka, T. Kurita, T. Nagatsu, Y. Segawa,
F. Toshimitsu, S. Muratsugu, M. Utsuno, S. Kume, M. Murata and
H. Nishihara, Chem.–Asian J., 2009, 4, 1361; (d) T. Kurita, Y. Nishimori,
F. Toishimitsu, S. Muratsugu, S. Kume and H. Nishihara, J. Am. Chem. Soc.,
2010, 132, 4524; (e) S. Katagiri, R. Sakamoto, H. Maeda, Y. Nishimori,
T. Kurita and H. Nishihara, Chem.–Eur. J., 2013, 19, 5088; ( f) R. Sakamoto,
S. Katagiri, H. Maeda and H. Nishihara, Coord. Chem. Rev., 2013, 257, 1493.
5 (a) L. J. Wan, M. Terashima, H. Noda and M. Osawa, J. Phys. Chem. B,
2000, 104, 3563; (b) C. A. Szafranski, W. Tanner, P. E. Laibinis and
R. L. Garrell, Langmuir, 1998, 14, 3570.
SEM (Fig. 5), from which the thickness of the [AT(FeLH)40] film
was found to be 66 nm, also consistent with the molecular
modelling (Fig. S2, ESI†).
Finally, intrawire electron transport behaviour was investigated.
We prepared ferrocene-terminated bis(terpyridine)–Fe(II) oligomer
wires, Au–[AT(FeLH)nÀ1FeT1] (n = 1–4), and the redox reaction
between ferrocene and a gold electrode was monitored by means
of potential-step chronoamperometry (PSCA). The electron transfer
rate constant for the one-dimensional molecular wire is as follows:11
ket = k0et exp(Àbdd)
(1)
where ket is the rate constant for the electron transfer between the
redox site and the electrode, d is the electron transfer distance
along the molecular wire, k0et is the zero-distance rate constant,
and bd is the distance attenuation factor. Large ke0t and small bd
indicate that the molecular wire can achieve good electron
transport. In this context, PCSA can extract ket experimentally:
6 (a) H. Jian and J. M. Tour, J. Org. Chem., 2003, 68, 5091; (b) L. Wei,
H. Tiznado, G. Liu, K. Padmaja, J. S. Lindsey, F. Zaera and D. F. Bocian,
i = i0 exp(Àkett)
(2)
¨
J. Phys. Chem. B, 2005, 109, 23963; (c) T. Weidner, A. Kramer, C. Bruhn,
¨
where i0 is the current flow at t = 0. Fig. S3 (ESI†) shows current–time
(i–t) and lni–t plots for Au–[AT(FeLH)nÀ1FeT1] (n = 1–4). The slope of
the ln i–t plot gives ket, and Fig. 6 shows a ln ket–d plot for Au–
[AT(FeLH)nÀ1FeT1] (n = 1–4). Fig. 6 also includes plots for Fe(tpy)2 oligo-
mer wires underlain by another anchor ligand, Au–[A2(FeLH)nÀ1FeT1]
(see Fig. S4, ESI† for i–t and ln i–t plots). The slope of the ln ket–d plot
gives bd, whereas the intercept of the vertical axis corresponds to ln ke0t.
We reported previously that bd was independent of the anchor ligand
(A).4d The present results agree with this finding, showing that the
M. Zharnikov, A. Shaporenko, U. Siemeling and F. Trager, Dalton
Trans., 2006, 2767; (d) S. Katano, Y. Kim, H. Matsubara, T. Kitagawa
and M. Kawai, J. Am. Chem. Soc., 2007, 129, 2511; (e) S. Ramachandr,
K. C. Schuermann, F. Edafe, P. Belser, C. A. Nijhuis, W. F. Reus, G. M.
Whitesides and L. De Cola, Inorg. Chem., 2011, 50, 1581.
7 (a) H. Sakurai, S. Tasaka and M. Kira, J. Am. Chem. Soc., 1972,
94, 9285; (b) G. C. Pitt, R. N. Carey and E. C. Toren, J. Am. Chem. Soc.,
1972, 94, 3806; (c) H. Sakurai, J. Organomet. Chem., 1980, 200, 261.
8 L. A. Wenzler, G. L. Moyes, G. N. Raikar, R. L. Hansen, J. M. Harris
and T. P. Beebe, Jr., Langmuir, 1997, 13, 3761.
9 N. Mori, S. Kaido, K. Suzuki, M. Nakamura and Y. Tsuzuki, Bull.
Chem. Soc. Jpn., 1971, 44, 1858.
two ln ket–d plots possess the same bd value, 0.018 ÅÀ1. On the 10 J. Noh, E. Ito and M. Hara, J. Colloid Interface Sci., 2010, 342, 513.
other hand, ln ke0t of Au–[AT(FeLH)nÀ1FeT1] is greater than that of
11 A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals
and Applications, Wiley, New York, 2nd edn, 2001.
Au–[A2(FeLH)nÀ1FeT1]. It is surprising that AT features rapid
12 Y. Men, K. Kubo, M. Kurihara and H. Nishihara, Phys. Chem. Chem.
electron transport despite lacking manifest p-conjugation.
7110 Chem. Commun., 2013, 49, 7108--7110
Phys., 2001, 3, 3427.
c
This journal is The Royal Society of Chemistry 2013