ChemComm
Communication
cage compound [(SnCl)4(FcP–PFc)2] [Fc = Fe(C5H4)(C5H5)],22
8 H. J. Breunig, I. Ghesner and E. Lork, Organometallics, 2001, 20, 1360.
9 (a) K. Issleib and K. Krech, Chem. Ber., 1966, 99, 1310;
(b) M. Baudler, M. Hallab, A. Zarkadas and E. Tolls, Chem. Ber.,
1973, 106, 3962; (c) M. Baudler, B. Carlsohn, D. Koch and
P. K. Medda, Chem. Ber., 1978, 111, 1210; (d) M. Baudler,
C. Gruner, H. Tschabunin and J. Hahn, Chem. Ber./Recl., 1982,
115, 1739; (e) A. H. Cowely, J. E. Kilduff, N. C. Norman and
M. Pakulski, J. Chem. Soc., Dalton Trans., 1986, 1801; ( f ) J. T. Yeh,
L. R. Avens and J. L. Mills, Phosphorus, Sulfur Silicon Relat. Elem.,
1990, 47, 319; (g) S. Kurz, H. Oesen, J. Sieler and E. Hey-Hawkins,
Phosphorus, Sulfur Silicon Relat. Elem., 1996, 117, 189.
10 (a) M. Baudler, D. Koch and B. Carlsohn, Chem. Ber., 1978,
111, 1217; (b) M. Baudler and G. Reuschenbach, Phosphorus Sulfur,
1980, 9, 81; (c) M. Baudler, J. Hellman and G. Reuschenbach, Z.
Anorg. Allg. Chem., 1984, 509, 38.
11 (a) M. Baudler, G. Reuschenbach and J. Hahn, Z. Anorg. Allg. Chem.,
1981, 482, 27; (b) M. Baudler, G. Reuschenbach, J. Hellmann and
J. Hahn, Z. Anorg. Allg. Chem., 1983, 499, 89; (c) M. Baudler,
G. Reuschenbach and J. Hahn, Chem. Ber., 1983, 116, 847;
(d) F. Fritz and T. Vaahs, Z. Anorg. Allg. Chem., 1987, 552, 18;
(e) F. Fritz and T. Vaahs, Z. Anorg. Allg. Chem., 1987, 553, 85;
2.599(2)–2.631(2) Å in [{(PhP–PPh)Sn(m-PPh)}2(NaꢁPMDETA)4]ꢁ
toluene [PMDETA
= (Me2NCH2CH2)2NMe] and 2.578(2)–
2.884(2) Å in [{Sn(m3-Ppy)}3{Sn(m3,m1-pyP–Ppy)}3]ꢁ2.5THF (py =
2-pyridyl)23).
Surprisingly, 2 proved to be extremely unreactive in substi-
tution reactions (elimination of Bu3SnCl) and transmetallation
reactions.24 The stability of the Sn–P bond could be due to
additional interaction of the phosphorus lone pair (pp) with the
vacant d orbital of tin;15e however, there is no evidence for
partial p bonding in 2. In this case, the very low reactivity is
most probably due to steric effects of the bulky mesityl groups.
Support from the Deutscher Akademischer Austausch
Dienst (DAAD, doctoral grant for I.J.) and the COST Action
CM0802 PhoSciNet is gratefully acknowledged.
Notes and references
¨
( f ) R. Wolf, S. Gomez-Ruiz, J. Reinhold, W. Bohlmann and
E. Hey-Hawkins, Inorg. Chem., 2006, 45, 9107.
‡ 2: a solution of Bu3SnCl (0.15 mL, 0.55 mmol) in toluene (5 mL) was
carefully added dropwise at ꢀ78 1C to an orange solution of
[Na2(thf)4P4Mes4]14 (0.25 g, 0.26 mmol) in toluene (50 mL). The result-
ing yellow solution was allowed to warm to room temperature over 2 h
and then stirred for an additional 2 h. The solvent was removed under
vacuum and the resulting yellow oil was extracted with Et2O (2 ꢂ
30 mL). The yellow Et2O solution was filtered and Et2O was evaporated.
The remaining crystalline yellow solid was dissolved in DME (1 mL) and
the solution stored at ꢀ20 1C. Yellow crystals of 2 formed within one
day. Yield: 0.25 g (80%). 1H NMR (25 1C, 400.13 MHz, D8-THF), d =
0.8–1.0 (br m, 18H, CH3 in Bu), 1.1–1.6 (br m, 36H, CH2 in Bu), 1.9–2.8
(br m, 36H, CH3 in Mes), 6.2–6.8 (br m, 8H, 3,5-H in Mes); 13C{1H} NMR
(25 1C, 100.61 MHz, D8-THF), d = 11.8 (s, CH3 in Bu), 12.7 (s, CH2 in Bu),
20.0 (s, CH2 in Bu), 128.3 (s, 3,5-C in Mes–PB), 129.5 (s, 3,5-C in Mes–PA),
136.4 (s, 4-C in Mes–PA), 138.2 (s, 4-C in Mes–PB), 143.5 (s, 2,6-C in Mes–
PA), 144.7 (m, 1-C in Mes), 146.1 (s, 2,6-C in Mes–PB); 31P NMR (25 1C,
161.98 MHz, D8-THF), see Table 1; 119Sn NMR (25 1C, 149.21 MHz, D8-
12 M. Baudler, Angew. Chem., Int. Ed. Engl., 1987, 26, 419.
13 M. Baudler and K. Glinka, Chem. Rev., 1994, 94, 1273.
¨
14 (a) R. Wolf, A. Schisler, P. Lonnecke, C. Jones and E. Hey-Hawkins,
´
Eur. J. Inorg. Chem., 2004, 3277; (b) S. Gomez-Ruiz and E. Hey-
´
Hawkins, Coord. Chem. Rev., 2011, 255, 1360; (c) S. Gomez-Ruiz and
E. Hey-Hawkins, Metal Complexes with Anionic Polyphosphorus
Chains as Potential Precursors for the Synthesis of Metal Phosphides,
in Phosphorus Chemistry: Catalysis and Material Science Applications,
ed. M. Peruzzini and L. Gonsalvi, Springer, 2011, vol. 37, pp. 85–120.
15 (a) M. N. Lanteri, R. A. Rossi and S. E. Matrin, J. Organomet. Chem.,
2009, 694, 3425; (b) W.-W. Du Mont, L. Mu¨ller, R. Martens,
P. M. Papathomas, B. E. Smart, H. E. Robertson and D. W. H.
Rankin, Eur. J. Inorg. Chem., 1999, 1381; (c) H. C. Brookes,
E. I. Lakoba and M. H. Sosabowski, J. Chem. Res., Synop., 1997,
¨
5, 156; (d) H. Schumann, H. Kopf and M. Schmidt, J. Organomet.
Chem., 1964, 2, 159; (e) I. G. M. Campbell, G. W. A. Fowels and
L. A. Nixon, J. Chem. Soc., 1964, 1389.
1
THF), d = ꢀ5.8 (d, JSnP = 863.5 Hz); elemental analysis: found, C
16 31P{1H} NMR (ꢀ80 1C, 161.98 MHz, D8-THF), d = ꢀ38.6 (m, PAA in 2),
0
58.51%, H 8.41%, calcd for C60H98Sn2P4, C 61.03%, H 8.37%. Crystal
0
ꢀ119.6 (m, PBB in 2), ꢀ50.5 (s, cyclo-(P4Mes4)), ꢀ114.1 (d, PA from
%
data for 2: C60H98Sn2P4, FW = 1180.64, triclinic, space group P1, Z = 1,
1
cyclo-(P3Mes3), JPP = 182.6 Hz), ꢀ149.9 (t, PB from cyclo-(P3Mes3),
a = 9.5430(2), b = 13.0225(4), c = 14.6643(4) Å, a = 110.296(2)1, b =
1JPP = 182.6 Hz), ꢀ191.2 (s, 1JPSn = 621.7 Hz), ꢀ30.5, ꢀ47.4, ꢀ114.3,
99.499(2)1, g = 106.251(2)1, V = 1569.89(7) Å3, m(Mo-Ka) = 0.931 mmꢀ1
,
rcalc = 1.249 Mg mꢀ3, T = 200(2) K. Data were collected on an Agilent
GEMINI CCD diffractometer. Of a total of 34 675 reflections, 9560 were
unique (Rint = 0.0205). The structure was solved by direct methods
(Sir-92)25 and refined by full-matrix least-square method on F2. Final
R1 = 0.0349 (all data) and wR2 = 0.0671 (all data). CCDC 936270 (2).
ꢀ124.8 (m, ABCD spin system, different isomer of 2), ꢀ102.6,
1
ꢀ141.6 (d, AB spin system, JPP = 308.3 Hz), ꢀ109.7, ꢀ133.8
1
(d, JPP = 198.9 Hz).
17 K. Marat, SPINWORKS, Version 3.1.7.0, University of Manitoba
Manitoba, Canada, 2010.
18 R. Wolf, Dissertation, Universitat Leipzig, 2005.
¨
19 R. Blom and A. Haaland, J. Mol. Struct., 1985, 128, 21.
20 D. Bongert, G. Heckmann, W. Schwarz, H.-D. Hausen and H. Binder,
Z. Anorg. Allg. Chem., 1995, 621, 1358.
21 D. Bongert, H.-D. Hausen, W. Schwarz, G. Heckmann and H. Binder,
Z. Anorg. Allg. Chem., 1996, 622, 1167.
22 V. Naseri, R. J. Less, R. E. Mulvey, M. McPartlin and D. S. Wright,
Chem. Commun., 2010, 46, 5000.
1 J. D. Woollins, Non-metal rings, cages and clusters, Wiley, 1988.
2 (a) A. L. Rheingold, Homoatomic rings, chains and macromolecules of
main-group elements, Elsevier Scientific Publishing Company,
Amsterdam, New York, 1977; (b) H. G. von Schnering, Angew. Chem.,
Int. Ed. Engl., 1981, 20, 33.
3 M. Baudler, Nova Acta Leopold., 1985, 59, 19.
4 (a) O. Mundt, H. Riffel, G. Becker and A. Simon, Z. Naturforsch., 1988,
43B, 952; (b) G. Becker, W. Golla, J. Grobe, K. W. Klinkhammer, D. Le
Van, A. H. Maulitz, O. Mundt, H. Oberhammer and M. Sachs, Inorg.
Chem., 1999, 38, 1099.
5 (a) O. Mundt, H. Riffel, G. Becker and A. Simon, Z. Naturforsch.,
1984, 39B, 317; (b) O. Mundt, G. Becker, H. Stadelmann and
H. Thurn, Z. Anorg. Allg. Chem., 1992, 617, 59.
´
23 F. Garcıa, A. D. Hopkins, R. A. Kowenicki, M. McPartlin, C. M. Pask, M. L.
Stead, A. D. Woods and D. S. Wright, Organometallics, 2005, 24, 1813.
24 Compound 2 was reacted with a variety of transition metal(II)
complexes, such as [Pd(cod)Cl2] (cod
= 1,5-cyclooctadiene),
[RhCl(CO)2]2, [RhCl(cod)]2, [FeBr2(CO)4] or main group metal
halides such as PbCl2, SnCl2. The reactions were usually performed
in refluxing THF and toluene. No reaction occurred under these
conditions.
6 G. Becker and O. Mundt, Unkonventionelle Wechselwirkungen in der
Chemie metallischer Elemente, VCH, Weinheim, Germany, 1992, p. 199.
¨
7 M. Ates, H. J. Breunig, K. Erbert, S. Gu¨lec, R. Kaller and M. Drager, 25 SIR92 – A. Altomare, G. Cascarano, C. Giacovazzo and A. Guagliardi,
Organometallics, 1994, 11, 145.
J. Appl. Crystallogr., 1993, 26, 343.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 7355--7357 7357