chiral indolines and related alkaloids. In this regard, indole
substrateswithpreinstallednucleophilesattheC3-position
are generally utilized. Gouverneur and co-workers have
developed an enantioselective fluorocyclization of indoles
bearing an embedded heteronucleophile tethered at the C3
or N1 position.14 As a continuation of our interest in the
catalytic asymmetric dearomatization reaction,15 we envi-
saged that enantioselective electrophilic chlorocyclization
of indoles bearing a nucleophile at the C2 position could
lead to a spiro-indoline containing a continuous spiro
quaternary carbon center and tertiary carbon center
(Scheme 1). Herein, we report the results from this study.
Scheme 1. Chlorocyclization of Indoles Bearing an Embedded
Nucleophile
(7) For recent examples on enantioselective bromocyclization, see:
(a) Murai, K.; Matsushita, T.; Nakamura, A.; Fukushima, S.; Shimura,
M.; Fujioka, H. Angew. Chem., Int. Ed. 2010, 49, 9174. (b) Denmark,
S. E.; Burk, M. T. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 20655. (c)
Zhou, L.; Tan, C. K.; Jiang, X.; Chen, F.; Yeung, Y.-Y. J. Am. Chem.
Soc. 2010, 132, 15474. (d) Tan, C. K.; Zhou, L.; Yeung, Y.-Y. Org. Lett.
2011, 13, 2738. (e) Zhou, L.; Chen, J.; Tan, C. K.; Yeung, Y.-Y. J. Am.
Chem. Soc. 2011, 133, 9164. (f) Huang, D.; Wang, H.; Xue, F.; Guan, H.;
Li, L.; Peng, X.; Shi, Y. Org. Lett. 2011, 13, 6350. (g) Zhang, W.; Liu, N.;
Schienebeck, C. M.; Decloux, K.; Zheng, S.; Werness, J. B.; Tang, W.
Chem.;Eur. J. 2012, 18, 7296. (h) Chen, J.; Zhou, L.; Yeung, Y.-Y. Org.
Biomol. Chem. 2012, 10, 3808. (i) Tan, C. K.; Le, C.; Yeung, Y.-Y. Chem.
Commun. 2012, 48, 5793. (j) Denmark, S. E.; Burk, M. T. Org. Lett. 2012,
14, 256. (k) Ikeuchi, K.; Ido, S.; Yoshimura, S.; Asakawa, T.; Inai, M.;
Hamashima, Y.; Kan, T. Org. Lett. 2012, 14, 6016. (l) Chen, J.; Zhou, L.;
Tan, C. K.; Yeung, Y.-Y. J. Org. Chem. 2012, 77, 999. (m) Jiang, X.;
Tan, C. K.; Zhou, L.; Yeung, Y.-Y. Angew. Chem., Int. Ed. 2012,
51, 7771. (n) Paull, D. H.; Fang, C.; Donald, J. R.; Pansick, A. D.;
Martin, S. F. J. Am. Chem. Soc. 2012, 134, 11128. (o) Murai, K.;
Nakamura, A.; Matsushita, T.; Shimura, M.; Fujioka, H. Chem.;
Eur. J. 2012, 18, 8448. (p) Chen, F.; Tan, C. K.; Yeung, Y.-Y. J. Am.
Chem. Soc. 2013, 135, 1232. (q) Zhang, Y.; Xing, H.; Xie, W.; Wan, X.;
Lai, Y.; Ma, D. Adv. Synth. Catal. 2013, 355, 68. (r) Zhou, L.; Tay,
D. W.; Chen, J.; Leung, G. Y. C.; Yeung, Y.-Y. Chem. Commun. 2013,
49, 4412. (s) Murai, K.; Matsushita, T.; Nakamura, A.; Hyogo, N.;
Nakajima, J.; Fujioka, H. Org. Lett. 2013, 15, 2526. (t) Huang, D.; Liu,
X.; Li, L.; Cai, Y.; Liu, W.; Shi, Y. J. Am. Chem. Soc. 2013, 135, 8101. (u)
We began our studies by testing the reactions of indole-
derived benzamide 1a with different halogen sources. For-
tunately, the reactions could all proceed smoothly via a6-exo-
trig cyclization to generate spiro benzoxazines (Table 1).
To our delight, with 1,3-dichloro-5,5-diphenylhydantoin
(DCDPH) as the halogen source and (DHQD)2PHAL
as the catalyst, the chlorocyclization of 1a led to 2a
in excellent yields with moderate enantioselectivity
at ꢀ30 °C using DCM or CH3CN as the solvent respectively
(85ꢀ94% yields, 75ꢀ77% ee, entries 1 and 2, Table 1).
Product 2a could be obtained in 89% yield and 90% ee
when mixed solvents (DCM/CH3CN: 2/1) were employed
(entry 3, Table 1). Reactions with several other halogen
sources gave much lower activity or enantioselectivity. For
example, only 10% conversion was obtained when NCS
was used (entry 4, Table 1). 1,3-Dichloro-5,5-dimethylhy-
dantoin (DCDMH) gave the desired product with a full
conversionand85%ee(entry5, Table1). Furtherscreening
of solvents revealedCHCl3 is the optimal one, affording the
desired product in 82% yield with 95% ee (entries 6ꢀ10,
Table 1). Elevating the reaction temperature to ꢀ10 °C led
to a slightly decreased yield and enantioselectivity (entry 11,
Table 1). The absolute configuration of the product was
determined by a single crystal X-ray analysis of enantiopure
2a (see the Supporting Information).
€
Wilking, M.; Muck-Lichtenfeld, C.; Daniliuc, C. G.; Hennecke, U.
J. Am. Chem. Soc. 2013, 135, 8133.
(8) For recent enantioselective fluorocyclization reactions, see: (a)
Wilkinson, S. C.; Lozano, O.; Schuler, M.; Pacheco, M. C.; Salmon, R.;
Gouverneur, V. Angew. Chem., Int. Ed. 2009, 48, 7083. (b) Rauniyar, V.;
Lackner, A. D.; Hamilton, G. L.; Toste, F. D. Science 2011, 334, 1681.
(c) Cochrane, N. A.; Nguyen, H.; Gagne, M. R. J. Am. Chem. Soc. 2013,
135, 628.
(9) For recent intermolecular enantioselective electrophilic fluorina-
tion and bromination reactions, see: (a) Phipps, R. J.; Hiramatsu, K.;
Toste, F. D. J. Am. Chem. Soc. 2012, 134, 8376. (b) Honjo, T.; Phipps,
R. J.; Rauniyar, V.; Toste, F. D. Angew. Chem., Int. Ed. 2012, 51, 9684.
(c) Alix, A.; Lalli, C.; Retailleau, P.; Masson, G. J. Am. Chem. Soc. 2012,
134, 10389. (d) Zhang, W.; Liu, N.; Schienebeck, C. M.; Zhou, X.; Izhar,
I. I.; Guzei, I. A.; Tang, W. Chem. Sci. 2013, 4, 2652.
(10) For recent examples on enantioselective chlorocyclization, see:
(a) Whitehead, D. C.; Yousefi, R.; Jaganathan, A.; Borhan, B. J. Am.
Chem. Soc. 2010, 132, 3298. (b) Jaganathan, A.; Garzan, A.; Whitehead,
D. C.; Staples, R. J.; Borhan, B. Angew. Chem., Int. Ed. 2011, 50, 2593.
(c) Yousefi, R.; Whitehead, D. C.; Mueller, J. M.; Staples, R. J.; Borhan,
B. Org. Lett. 2011, 13, 608.
Under the optimized reaction conditions, various sub-
stituted indole-derived benzamides were tested to probe
the generality of the reaction. The results are summarized
in Scheme 2. Either an electron-donating group (2bꢀ2d,
80ꢀ87% yields, 91ꢀ95% ee) or an electron-withdrawing
group (2e, 70% yield, 95% ee) at the meta or para position
of the benzamide (R3) were well tolerated. In addition, 1f
containing heteroarylamide was also a suitable substrate
(2f, 86% yield, 94% ee). A decreased ee, however, was
obtained when the benzamide was replaced with an piva-
lamide (2g, 76% yield, 80% ee). The substrates bearing an
electron-donating group (2h, 90% yield, 96% ee) or an
electron-withdrawing group (2i, 82% yield, 90% ee) on the
indole core were well tolerated.
(11) During the preparation of this manuscript, an enantioselective
chloroetherification of homoallylic alcohols was reported; see: Zeng, X.;
Miao, C.; Wang, S.; Xia, C.; Sun, W. Chem. Commun. 2013, 49, 2418.
(12) For a selected recent example of enantioselective dichlorination
of olefin, see: (a) Nicolaou, K. C.; Simmons, N. L.; Ying, Y.; Heretsch,
P. M.; Chen, J. S. J. Am. Chem. Soc. 2011, 133, 8134. For enantiose-
lective chloroamination reaction of activated alkene, see: (b) Cai, Y.;
Liu, X.; Jiang, J.; Chen, W.; Lin, L.; Feng, X. J. Am. Chem. Soc. 2011,
133, 5636. For enantioselective halogenative semipinacol rearrange-
ment, see: (c) Chen, Z.-M.; Zhang, Q.-W.; Chen, Z.-H.; Li, H.; Tu,
Y.-Q.; Zhang, F.-M.; Tian, J.-M. J. Am. Chem. Soc. 2011, 133, 8818.
(13) For a recent review, see: Zhuo, C.-X.; Zhang, W.; You, S.-L.
Angew. Chem., Int. Ed. 2012, 51, 12662.
(14) Lozano, O.; Blessley, G.; Martinez del Campo, T.; Thompson,
A. L.; Giuffredi, G. T.; Bettati, M.; Walker, M.; Borman, R.; Gouverneur,
V. Angew. Chem., Int. Ed. 2011, 50, 8105.
(15) For selected examples of the dearomatization reaction from this
group, see: (a) Wu, Q.-F.; He, H.; Liu, W.-B.; You, S.-L. J. Am. Chem.
Soc. 2010, 132, 11418. (b) Cai, Q.; Zheng, C.; Zhang, J.-W.; You, S.-L.
Angew. Chem., Int. Ed. 2011, 50, 8665. (c) Yin, Q.; You, S.-L. Org. Lett.
2012, 14, 3526.
Substrates varying the substituents on aniline were also
carried out to further examine the reaction scope. In all
B
Org. Lett., Vol. XX, No. XX, XXXX