ChemComm
Communication
To further evaluate the scope of the reaction, a survey of amide DIPEA and K2CO3 as the base, and DMF as the solvent, eligible
substrates was conducted (Table 2, entries 14–28). We changed the to a broad substrate scope. Since the current modifications at
R2 group of the amide first. A range of variously substituted phenyl position 2 are rather limited for the 3-carboxy-4-quinolone and
rings were well tolerated to furnish the quinolone products in chromone, this simple and versatile methodology will be an
moderate to good yields (entries 14–22). An interesting steric hin- excellent complement for the classical methods.
drance effect was observed in this reaction, with the yields being
We thank the National Natural Science Foundation of China
increased as the steric hindrance of R2 increased (entries 17, 18, and (81021062, 81072527 and 81123004).
21 vs. entries 16, 19, and 20). Not surprisingly, only 41% yield was
obtained with N-methylfuran-2-carboxamide as the starting material
(entry 22), because of the low yield of the corresponding imidoyl
Notes and references
1 C. Mugnaini, S. Pasquini and F. Corelli, Curr. Med. Chem., 2009, 16,
chloride and relatively less steric hindrance. Attempts to further
expand the scope to aliphatic amides were unfruitful, mainly due to
the presence of the a-hydrogen which complicated the formation of
the precursor imidoyl chloride. Finally, we examined the R3 sub-
stituent on the amide (entries 23–28). All substrates bearing an
aliphatic or aromatic group afforded products in good yields. Similar
to the R2 group, the steric hindrance favored the formation of the
desired products. Notably, 4y was isolated in an overall yield of 85%
for all three steps (entry 28), but its C–N bond forming step required
higher temperature and longer reaction time, up to 120 1C for
5 hours. Further transformation of these quinolone carboxylates is
widely feasible, e.g., N-debenzylation of compound 4x by hydro-
genation readily afforded 4(1H)-quinolone 4z (see ESI†).
1746–1767.
2 (a) H. Wang, Q. D. You, Z. Y. Li and Y. Q. Zou, Chin. Chem. Lett., 2008, 19,
1395–1397; (b) Y. Xia, Z. Y. Yang, P. Xia, T. Hackl, E. Hamel, A. Mauger,
J. H. Wu and K. H. Lee, J. Med. Chem., 2001, 44, 3932–3936.
3 X. Xu, H. Y. Liu, L. Liu, L. Xie and X. D. Liu, Eur. J. Drug Metab.
Pharmacokinet., 2008, 33, 1–7.
4 (a) M. Llinas-Brunet, M. D. Bailey, E. Ghiro, V. Gorys, T. Halmos,
M. Poirier, J. Rancourt and N. Goudreau, J. Med. Chem., 2004, 47,
6584–6594; (b) B. D. Lucero, C. R. B. Gomes, I. C. D. P. Frugulhetti,
L. V. Faro, L. Alvarenga, M. C. B. V. de Souza, T. M. L. de Souza and
V. F. Ferreira, Bioorg. Med. Chem. Lett., 2006, 16, 1010–1013.
5 (a) S. Pasquini, C. Mugnaini, C. Tintori, M. Botta, A. Trejos,
R. K. Arvela, M. Larhed, M. Witvrouw, M. Michiels, F. Christ,
Z. Debyser and F. Corelli, J. Med. Chem., 2008, 51, 5125–5129;
(b) M. Sato, H. Kawakami, T. Motomura, H. Aramaki, T. Matsuda,
M. Yamashita, Y. Ito, Y. Matsuzaki, K. Yamataka, S. Ikeda and
H. Shinkai, J. Med. Chem., 2009, 52, 4869–4882.
Having established a robust synthesis of a diverse array of
2-substituted-4-quinolone-3-carboxylates, we were interested in
whether the approach could be extended to chromone synthesis
by switching N-arylation to O-arylation, namely, using a hydroxyl as
the nucleophile. To our delight, when the imidoyl chloride was
changed to acyl chloride, a variety of 2-substituted-3-carboxy-4-
chromones were generated in good yields (Table 3). Similar to the
synthesis of the quinolone, the yields increased as the steric
hindrance of aryl chloride increased. But the electronic effect
seemed to be slight. In general, aromatic acyl chloride performed
better than aliphatic acyl chloride, thus providing higher yields.
In conclusion, we have developed a convenient, practical,
and highly efficient method for the synthesis of 2-substituted-3-
carboxy quinolone and chromone derivatives. The one-pot
synthesis uses readily available 3-oxo-3-arylpropanoates and
amides/acyl chlorides as the starting materials, inexpensive
6 (a) S. Pasquini, M. De Rosa, V. Pedani, C. Mugnaini, F. Guida,
L. Luongo, M. De Chiaro, S. Maione, S. Dragoni, M. Frosini,
A. Ligresti, V. Di Marzo and F. Corelli, J. Med. Chem., 2011, 54,
5444–5453; (b) S. Pasquini, A. Ligresti, C. Mugnaini, T. Semeraro,
L. Cicione, M. De Rosa, F. Guida, L. Luongo, M. De Chiaro,
M. G. Cascio, D. Bolognini, P. Marini, R. Pertwee, S. Maione, V. Di
Marzo and F. Corelli, J. Med. Chem., 2010, 53, 5915–5928.
7 (a) K. Grohe and H. Heitzer, Liebigs Ann. Chem., 1987, 109, 871–879;
(b) K. Baumann and K. Fitzinger, Ger. Offen., DE 3821798, 1990.
8 R. G. Gould and W. A. Jacobs, J. Am. Chem. Soc., 1939, 61, 2890–2995.
9 (a) C. C. Guillou, P. Remuzon, D. Bouzard, J. C. Quirion, S. Giorgi-
Renault and H. P. Husson, Tetrahedron, 1998, 54, 83–96;
(b) C. ClemencinLeGuillou, S. GiorgiRenault, J. C. Quirion and
H. P. Husson, Tetrahedron Lett., 1997, 38, 1037–1040.
10 M. X. Wang, Y. Liu and Z. T. Huang, Tetrahedron Lett., 2001, 42, 2553–2555.
11 C. Mitsos, A. Zografos and O. Igglessi-Markopoulou, Chem. Pharm.
Bull., 2000, 48, 211–214.
12 (a) Y. Y. Lai, L. J. Huang, K. H. Lee, Z. Y. Xiao, K. F. Bastow, T. Yamori and
S. C. Kuo, Bioorg. Med. Chem., 2005, 13, 265–275; (b) Y. Q. Zhang,
J. A. Clark, M. C. Connelly, F. Y. Zhu, J. K. Min, W. A. Guiguemde,
A. Pradhan, L. Iyer, A. Furimsky, J. Gow, T. Parman, F. El Mazouni,
M. A. Phillips, D. E. Kyle, J. Mirsalis and R. K. Guy, J. Med. Chem., 2012,
55, 4205–4219; (c) C. Pidathala, R. Amewu, B. Pacorel, G. L. Nixon,
P. Gibbons, W. D. Hong, S. C. Leung, N. G. Berry, R. Sharma, P. A. Stocks,
A. Srivastava, A. E. Shone, S. Charoensutthivarakul, L. Taylor, O. Berger,
A. Mbekeani, A. Hill, N. E. Fisher, A. J. Warman, G. A. Biagini, S. A. Ward
and P. M. O’Neill, J. Med. Chem., 2012, 55, 1831–1843; (d) S. C. Leung,
P. Gibbons, R. Amewu, G. L. Nixon, C. Pidathala, W. D. Hong, B. Pacorel,
N. G. Berry, R. Sharma, P. A. Stocks, A. Srivastava, A. E. Shone,
S. Charoensutthivarakul, L. Taylor, O. Berger, A. Mbekeani, A. Hill,
N. E. Fisher, A. J. Warman, G. A. Biagini, S. A. Ward and P. M. O’Neill,
J. Med. Chem., 2012, 55, 1844–1857.
13 D. A. Horton, G. T. Bourne and M. L. Smythe, Chem. Rev., 2003, 103,
893–930.
14 (a) A. S. Guram and S. L. Buchwald, J. Am. Chem. Soc., 1994, 116,
7901–7902; (b) F. Paul, J. Patt and J. F. Hartwig, J. Am. Chem. Soc.,
1994, 116, 5969–5970; (c) J. P. Wolfe, S. Wagaw, J. F. Marcoux and
S. L. Buchwald, Acc. Chem. Res., 1998, 31, 805–818; (d) J. F. Hartwig,
Acc. Chem. Res., 1998, 31, 852–860.
Table 3 The substrate scope of the one-pot synthesis of 2-substituted-3-
carboxy-chromone derivativesa
Product
Entry
Yieldb (%)
1
2
3
4
5
6
7
8
9
6a: R2 = Ph
64
61
69
73
61
50
63
36
43
6b: R2 = 4-Me-Ph
6c: R2 = 4-F-Ph
6d: R2 = 2-Cl-Ph
6e: R2 = 2,3-di-OMe-Ph
6f: R2 = 3-NO2-Ph
6g: R2 = 2-furanyl
6h: R2 = Me
15 (a) F. Ullmann, Ber. Dtsch. Chem. Ges., 1903, 36, 2382–2384; (b) D. W. Ma,
Y. D. Zhang, J. C. Yao, S. H. Wu and F. G. Tao, J. Am. Chem. Soc., 1998,
120, 12459–12467; (c) I. P. Beletskaya and A. V. Cheprakov, Coord. Chem.
Rev., 2004, 248, 2337–2364; (d) D. W. Ma and Q. A. Cai, Acc. Chem. Res.,
2008, 41, 1450–1460; (e) G. Evano, N. Blanchard and M. Toumi, Chem.
Rev., 2008, 108, 3054–3131.
6i: R2 = cyclobutyl
a
Reaction conditions: 1d (2 mmol), 5 (2.4 mmol), SOCl2 (12 mmol),
b
K2CO3 (6 mmol), DIPEA (4 mmol), DMF (10 mL), in air. Values are the
overall yields of isolated products.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun.