ChemComm
Communication
J. Zhu and Y. Tang, Angew. Chem., Int. Ed., 2012, 51, 11620–11623;
(c) J. Li, S.-H. Liao, H. Xiong, Y.-Y. Zhou, X.-L. Sun, Y. Zhang,
X.-G. Zhou and Y. Tang, Angew. Chem., Int. Ed., 2012, 51,
8838–8841; (d) R. Sambasivan and Z. T. Ball, Angew. Chem., Int.
Ed., 2012, 51, 8568–8572; (e) J. F. Briones and H. M. L. Davies, J. Am.
Chem. Soc., 2012, 134, 11916–11919; ( f ) C. Qin, V. Boyarskikh,
J. H. Hansen, K. I. Hardcastle, D. G. Musaev and H. M. L. Davies,
J. Am. Chem. Soc., 2011, 133, 19198–19204; (g) X. Xu, H. Lu,
J. V. Ruppel, X. Cui, S. L. de Mesa, L. Wojtas and X. P. Zhang,
J. Am. Chem. Soc., 2011, 133, 15292–15295; (h) C. R. Solorio-Alvarado,
Y. Wang and A. M. Echavarren, J. Am. Chem. Soc., 2011, 133,
11952–11955; (i) V. N. G. Lindsay, C. Nicolas and A. B. Charette,
J. Am. Chem. Soc., 2011, 133, 8972–8981; ( j) B. M. Trost, A. Breder,
B. M. O’Keefe, M. Rao and A. W. Franz, J. Am. Chem. Soc., 2011, 133,
4766–4769; (k) F. Wang, T. Luo, J. Hu, Y. Wang, H. S. Krishnan,
P. V. Jog, S. K. Ganesh, G. K. S. Prakash and G. A. Olah, Angew.
Chem., Int. Ed., 2011, 50, 7153–7157; (l) B. Morandi, B. Mariampillai
and E. M. Carreira, Angew. Chem., Int. Ed., 2011, 50, 1101–1104;
(m) S. Zhu, X. Xu, J. A. Perman and X. P. Zhang, J. Am. Chem. Soc.,
2010, 132, 12796–12799; (n) J. A. Bull and A. B. Charette, J. Am. Chem.
Soc., 2010, 132, 1895–1902; (o) A.-M. Abu-Elfotoh, K. Phomkeona,
K. Shibatomi and S. Iwasa, Angew. Chem., Int. Ed., 2010, 49,
8439–8443; (p) T. Nishimura, Y. Maeda and T. Hayashi, Angew.
Chem., Int. Ed., 2010, 49, 7324–7327.
Scheme 3 Proposed mechanism of the formal C–H insertion reaction.
Scheme 4 Deuterium experiment for the mechanism.
4 For accounts of metal-catalyzed cyclopropanaton of electron-
deficient olefins, see: (a) S. Chen, J. Ma and J. Wang, Tetrahedron
Lett., 2008, 49, 6781–6783; (b) S. Zhu, J. V. Ruppel, H. Lu, L. Wojtas
and X. P. Zhang, J. Am. Chem. Soc., 2008, 130, 5042–5043; (c) Y. Chen,
J. V. Rippel and X. P. Zhang, J. Am. Chem. Soc., 2007, 129,
12074–12075; (d) J. A. Miller, B. A. Gross, M. A. Zhuravel, W. Jin
and S. T. Nguyen, Angew. Chem., Int. Ed., 2005, 44, 3885–3889;
(e) W. Lin and A. B. Charette, Adv. Synth. Catal., 2005, 347,
1547–1552; ( f ) A. B. Charette, M. K. Janes and H. Lebel, Tetrahedron:
Asymmetry, 2003, 14, 867–872; (g) J. A. Miller, W. Jin and S. T.
Nguyen, Angew. Chem., Int. Ed., 2002, 41, 2953–2956; (h) S. E.
Denmark, R. A. Stavenger, A.-M. Faucher and J. P. Edwards, J. Org.
Chem., 1997, 62, 3375–3389; (i) M. Brookhart and W. B. Studabaker,
Chem. Rev., 1987, 87, 411–432; ( j) M. P. Doyle, R. L. Dorow and
M. H. Tamblyn, J. Org. Chem., 1982, 47, 4059–4068; (k) M. P. Doyle
and J. G. Davidson, J. Org. Chem., 1980, 45, 1538–1539;
(l) A. Nakamura, A. Konishi, Y. Tatsuno and S. Ostuka, J. Am. Chem.
Soc., 1978, 100, 3443–3448; (m) U. Mende, B. Radu¨chel, G. Cleve,
G.-A. Hoyer and H. Vorbru¨ggen, Tetrahedron Lett., 1975, 16, 629–632.
5 For accounts of iron porphyrin catalyzed cyclopropanation, see:
(a) B. Morandi and E. M. Carreira, Science, 2012, 335, 1471–1474;
(b) B. Morandi, A. Dolva and E. M. Carreira, Org. Lett., 2012, 14,
2162–2163; (c) B. Morandi, J. Cheang and E. M. Carreira, Org. Lett.,
2011, 13, 3080–3081; (d) B. Morandi and E. M. Carreira, Angew.
Chem., Int. Ed., 2010, 49, 938–941; (e) Y. Chen and X. P. Zhang, J. Org.
Chem., 2007, 72, 5931–5934; ( f ) P. L. Maux, S. Juillard and
G. Simonneaux, Synthesis, 2006, 1701–1704; (g) T.-S. Lai,
F.-Y. Chan, P.-K. So, D.-L. Ma, K.-Y. Wong and C.-M. Che, Dalton
Trans., 2006, 4845–4851; (h) Y. Li, J.-S. Huang, Z.-Y. Zhou, C.-M. Che
and X.-Z. You, J. Am. Chem. Soc., 2002, 124, 13185–13193;
(i) C. G. Hamaker, G. A. Mirafzal and L. K. Woo, Organometallics,
2001, 20, 5171–5176; ( j) A. K. Aggarwal, J. de Vicente and
R. V. Bonnert, Org. Lett., 2001, 3, 2785–2788; (k) Z. Gross, N. Galili
and L. Simkhovich, Tetrahedron Lett., 1999, 40, 1571–1574;
(l) J. R. Wolf, C. J. Hamaker, J.-P. Djukic, T. Kodadek and
L. K. Woo, J. Am. Chem. Soc., 1995, 117, 9194–9199.
methoxycarbonyl groups may be caused by the diastereoselectivity in
the cyclopropanation step or the different trigger group governed
ring-opening (MeO– vs. Ph3PQCH–), but further mechanistic studies
are needed to draw an explicit rationalization for the current reaction.
In summary, a carbene transfer reaction of tri-substituted
alkenes mediated by iron-porphyrin catalysis has been successfully
realized based on an ylidic activation approach. The reaction with
diazo acetate proceeded via a formal sp2 C–H insertion to the
double bond and delivered multiply substituted 1,3-butadiene
derivatives in moderate to excellent yields with excellent Z–E
selectivity, while utilization of diazo arylethanone as the substrate
allows an efficient construction of cyclopentadiene derivatives. To
our knowledge, this reaction represents the first example of the
reactions of trisubstituted a,b-unsaturated carbonyl esters with iron
carbenes. The current reaction further demonstrated that the low
reactivity or inactivity of di- and tri-substituted alkenes toward
electrophilic iron carbenes could be partially overcome by increasing
the electron density of the double bond.
We are grateful for the financial support from the Natural
Science Foundation of China (No. 20932008, 21121062, 21272248),
the Major State Basic Research Development Program (Grant No.
2009CB825300) and Chinese Academy of Sciences.
Notes and references
´
1 For recent reviews, see: (a) A. Caballero, A. Prieto, M. M. Dıaz-
´
Requejo and P. J. Perez, Eur. J. Inorg. Chem., 2009, 1137–1144;
6 S. R. Wang, C.-Y. Zhu, X.-L. Sun and Y. Tang, J. Am. Chem. Soc., 2009,
131, 4192–4193.
7 P. Wang, L. Lin, J.-B. Zhu, S.-H. Liao, S. R. Wang, Y.-X. Li and
Y. Tang, Chem.–Eur. J., 2013, 19, 6766–6773.
(b) H. Pellissier, Tetrahedron, 2008, 64, 7041–7095; (c) Z. Zhang
and J. Wang, Tetrahedron, 2008, 64, 6577–6605; (d) H. M. L. Davies
and S. J. Hedley, Chem. Soc. Rev., 2007, 36, 1109–1119; (e) H. Lebel,
J.-F. Marcoux, C. Molinaro and A. B. Charette, Chem. Rev., 2003, 103,
977–1050; ( f ) M. P. Doyle and D. C. Forbes, Chem. Rev., 1998, 98,
911–936; (g) M. P. Doyle and M. N. Protopopova, Tetrahedron, 1998,
54, 7919–7946; (h) T. Ye and M. A. Mckervey, Chem. Rev., 1994, 94,
1091–1160; (i) A. Padaw and S. F. Hornbuckle, Chem. Rev., 1991, 91,
263–309; ( j) M. P. Doyle, Chem. Rev., 1986, 86, 919–939.
8 For details, see the ESI†.
9 (a) M. Hatanaka, Y. Himeda, Y. Tanaka and I. Ueda, Tetrahedron Lett.,
1995, 36, 3211–3214; (b) M. Hatanaka, Y. Himeda, R. Imashiro, Y. Tanaka
and I. Ueda, J. Org. Chem., 1994, 59, 111–119; (c) M. Hatanaka, Y. Himeda
and I. Ueda, Tetrahedron Lett., 1991, 32, 4521–4524.
10 (a) A. Togni and R. L. Halterman, Metallocenes: Synthesis, Reactivity,
Applications, Wiley-VCH, Weinheim, 1998, vol. 1 and 2; (b) N. J.
Long, Metallocene: An Introduction to Sandwich Complexes, Blackwell
Science, Oxford, 1998; (c) E. Winterfeldt, Chem. Rev., 1993, 93,
827–843; (d) E. G. Mamedov and E. I. Klabunovskii, Russ. J. Org.
Chem., 2008, 44, 1097–1120.
2 M. P. Doyle, M. A. McKervey and T. Ye, Modern Catalytic Methods for
Organic Synthesis With Diazo Compounds, John Wiley and Sons, Inc.,
New York, 1998.
3 For recently selected examples of cyclopropanation of olefins, see:
(a) V. N. G. Lindsay, D. Fiset, P. J. Gritsch, S. Azzi and A. B. Charette,
J. Am. Chem. Soc., 2013, 135, 1463–1470; (b) C. Deng, L.-J. Wang,
c
7438 Chem. Commun., 2013, 49, 7436--7438
This journal is The Royal Society of Chemistry 2013