11272 J. Phys. Chem. B, Vol. 101, No. 51, 1997
Buntkowsky et al.
TABLE 2: Parameters from the 15N-13C Labeled 15N Spectra
15N-13C
δ
11 (ppm)
δ22 (ppm)
δ33 (ppm)
δiso (ppm)
η
R
â
D (Hz)
AAa
AAb
GAc
247(1)
245(1)
239(1)
90(1)
89(1)
76(1)
77(1)
77(1)
57(1)
138
137
124
0.12
0.11
0.17
0(10)
0
100
20(3)
22.1
89
1230(40)
1220
1220
a Acetanilide data from ref 1a. b Acetanilide, own results. c Gluconamide.
TABLE 3: Parameters from the 15N-2H-Labeled 15N Spectra
15N-2H
δ
11 (ppm)
δ22 (ppm)
δ33 (ppm)
δiso (ppm)
ηd
R
â
D (Hz)
AAa
AAb
GAc
247(1)
245(1)
239(1)
90(1)
89(1)
76(1)
77(1)
77(1)
57(1)
138
137
124
0.12
0.11
0.17
0(3)
0
15
83(3)
81
90
1690(40)
1640
1600
a Acetanilide data from ref 1a. b Acetanilide, own results. c Gluconamide. d To remain consistent with the notation of the principal values used
by Lumsden,1a but avoid values of η > 1, we defined η ) (δ22 - δ33)/(δ11 - δiso) instead of the usual η ) (δ22 - δ11)/(δ33 - δiso).
effects are not responsible for the differences in the local
electronic structure, which is reflected in the differences in the
shielding parameters. The N-H‚‚‚OdC intermolecular hydro-
gen bond is the main structural element responsible for the
formation of the extended quadruple helixes in the fibrous
modification of the gluconamide molecules. Therefore, we
conclude that differences in the intermolecular hydrogen bonding
are the principal reason for the differences in the tensor
orientations. This suggests that to obtain reasonable results from
ab initio calculations of amide and peptide bonds, it is important
not only to include the local molecular configuration but also
to include information about the neighboring molecules.
It has been demonstrated that dipolar chemical shift NMR
spectroscopy can give valuable information about the structure
of small molecular groups. The possible information gain from
this method can be greatly enhanced by combining this form
of NMR spectroscopy with additional NMR methods, for
example, SEDOR experiments for directly measuring the
strength of dipolar couplings or selectively switching on and
off heteronuclear dipolar couplings by decoupling of the second
X-nuclei and CP-MAS techniques for determining the isotropic
shielding values. These additional methods are demanding
concerning the necessary experimental setup, because at least
a three-channel NMR spectrometer is needed. It has been shown
that acetanilide, because of its favorable NMR parameters and
simple labeled synthesis, is a convenient standard for setting
up these experiments. As an application to a larger molecule,
the structure of the amide group of the N-1-octyl-D-gluconamide
in its fibrous modification has been determined.
Finally the question arises whether these methods permit the
study of larger structures, for example, small peptides or
oligonucleotides, where several bonds have to be correlated to
each other to give the complete geometrical structure of the
molecule. For these cases, the absence of the isotropic chemical
shift resolution (which would be given, for example, by MAS
type experiments) is a strong restriction for the applicability of
the method, because it demands pairwise selective isotopic
labeling, for example, of the sequence of amino acids, which is
very demanding concerning the synthetic expense. Therefore,
for these types of systems, it is advantageous to apply MAS
techniques combined with dipolar recoupling sequences.12
However, these experiments provide only very indirect access
to the orientational correlation of dipolar interactions, which
represent bond directions and chemical shift tensors that
represent the local electronic structure. If this information is
desired, it is therefore necessary to perform the labeled synthesis
and apply the techniques described in this paper.
Acknowledgment. This work was supported by the German
Israel Foundation under Grant G.I.F. Research Grant No.
I-297.092.05/93.
References and Notes
(1) See, for example: (a) Lumsden, M. D.; Wasylishen, R. E.; Eichele,
K.; Schindler, M.; Penner, G. H.; Power, W. P.; Curtis, R. D. J. Am. Chem.
Soc. 1994, 116, 1403. (b) Ando, S.; Ando, I.; Shoji, A.; Ozaki, T.; Tabeta,
R.; Saito, H. J. J. Am. Chem. Soc. 1985, 107, 7848. (c) Ando, S.; Yamanobe,
T.; Ando. I.; Shoji, A.; Ozaki, T. J. Mol. Struct. 1989, 192, 153. (d)
Asakawa, N.; Kuroki, S.; Kurosu, H.; Ando, I.; Shoji, A.; Ozaki, T. J. Am.
Chem. Soc. 1992, 114, 3261. (e) Shoji, A.; Ozaki, T.; Fujito, T.; Deguchi,
K.; Ando, S.; Ando. I. Macromolecules 1989, 22, 2860. (f) Shoji, A.; Ozaki,
T.; Fujito, T.; Deguchi, K.; Ando, S.; Ando, I. J. Am. Chem. Soc. 1992,
112, 4693. (g) Kuroki, S.; Asakawa, N.; Ando, S.; Ando, I.; Shoji, A.; Ozaki,
T. J. Mol. Struct. 1991, 245, 69. (g) Shoji, A.; Ando, S.; Kuroki, S.; Ando,
I.; Webb, G. A. Annu. Rep. NMR Spectrosc. 1993, 26, 55. (h) Hoelger, C.
G.; Limbach, H. H. J. Phys. Chem. 1994, 98, 11803. (i) Hoelger, C. G.;
Limbach, H. H.; Aguilar-Parrilla, F.; Elgue´ro, J.; Weintraub, O.; Vega, S.
J. Magn. Reson. 1996, A120, 46.
(2) (a) Duncan, T. M. A Compilation of Chemical Shift Anisotropies;
The Farragut Press: Chicago, IL, 1990. (b) Zhengtian Gu; Zambrano, R.;
McDermott, A. J. Am. Chem. Soc. 1994, 116, 6368.
(3) Svenson, S.; Kirste, B.; Fuhrhop, J. H. J. Am. Chem. Soc. 1994,
116, 11969.
(4) (a) Kaplan D. E.; Hahn E. L. J. Phys. Radium 1958, 19, 821. (b)
Kaplan, D. E.; Hahn, E. L. Bull. Am. Phys. Soc. 1957, 2, 384. (c) Emshwiller,
M.; Hahn, E. L.; Kaplan, D. E. Phys. ReV. Lett. 1960, 118, 414.
(5) See, for example: (a) Slichter C. P. Principles of Magnetic
Resonance, 3rd ed.; Springer-Verlag: Berlin, Heidelberg, New York, 1990.
(b) Abragam, A. Principles of Nuclear Magnetism; Clarendon Press: Oxford,
1961. (c) Mehring, M. High-Resolution NMR Spectroscopy in Solids;
Springer-Verlag: Berlin, Heidelberg, New York, 1983. (d) Schmidt-Rohr,
K.; Spiess, H. W. Multidimensional Solid State NMR and Polymers;
Academic Press: London, 1994. (e) Ernst, R. R.; Bodenhausen, G.; Wokaun,
A. Principles of NMR in One and Two Dimensions; Clarendon Press:
Oxford, 1987.
(6) Buntkowsky, G.; Taupitz, M.; Roessler, E.; Vieth, H. M. J. Phys.
Chem. A 1997, 101, 67.
(7) Nakai, T.; McDowell, C. A. J. Am. Chem. Soc. 1994, 116, 6373.
(8) (a) Organikum; VEB Verlag der Wissenschaften: Berlin, 1986.
(b) Kling, B. Ph.D. Thesis, FU Berlin, 1996.
(9) (a) Brown, C. J. Acta Crystallogr. 1966, 21, 442. (b) Wasserman,
H. J.; Ryan, R. R.; Layne, S. P. Acta Crystallogr. 1985, 41, 783.
(10) Spiess, H. W. NMR Basic Principles and Progress; Diehl, P., Fluck,
E., Kosfeld, R., Eds.; Springer-Verlag: Berlin, 1978; Vol. 15, 58, pp 167-
168.
(11) (a) Zabel, V.; Mu¨ller-Fahrnow, A.; Hilgenfeld, R.; Saenger, W.;
Pfannemu¨ller, B.; Enkelmann, V.; Welte, W. Chem. Phys. Lipids 1986, 39,
313. (b) Darbon-Meyssoniier, N.; Oddon, Y.; Decoster, E.; Pavia, A. A.;
Pepe, G.; Reboul, J. P. Acta Crystallogr. 1985, C41, 1324.
(12) Bennett, A. E.; Griffin, R. G.; Vega, S. NMR Basic Principles and
Progress; Diehl, P., Fluck, E., Kosfeld, R., Eds.; Springer-Verlag: Berlin,
1994; Vol. 33, p 1.
(13) Hiyama, Y.; Niu, C. H.; Silverton, J. V.; Bavoso, A.; Torchia, D.
A. J. Am. Chem. Soc. 1988, 110, 2378.