Journal of the American Chemical Society
Article
(5) (a) Schroer, K.; Kittelmann, M.; Lutz, S. Biotechnol. Bioeng. 2010,
106, 699−706. (b) Guengerich, F. P. Nat. Rev. Drug Discov. 2002, 1,
359−366.
(6) CYPs are responsible for most oxidative mechanisms in drug
clearance (including for amines): (a) Gorrod, J. W.; Aislaitner, G. Eur.
J. Drug Metab. Pharmacokinet. 1994, 19, 209−217. (b) Tozer, T. N.;
Rowland, M. Introduction to pharmacokinetics and pharmacodynamics:
the quantitative basis of drug therapy; Lippincott Williams & Wilkins
Publishers: Philadelphia, PA, 2006.
C. R.; Friedberg, T. FEBS Lett. 1996, 397, 210−214. (c) Pritchard, M.
P.; Glancey, M. J.; Blake, J. A. R.; Gilham, D. E.; Burchell, B.; Wolf, C.
R.; Friedberg, T. Pharmacogenetics 1998, 8, 33−42. (d) Pritchard, M.
P.; Ossetian, R.; Li, D. N.; Henderson, C. J.; Burchell, B.; Wolf, C. R.;
̈
Friedberg, T. Arch. Biochem. Biophys. 1997, 345, 342−354. (e)
A
minimal threshold of 5−10% product formation is needed in the
analytical screen in order to proceed to a preparative scale.
(19) The high-dilution volumes typical in biotransformations render
scale up unpractical above a certain amount of starting material.
(20) For further details on the chemical conditions investigated, see
the SI: (a) For a review on chemical C-H bond oxidations, see:
Newhouse, T.; Baran, P. S. Angew. Chem., Int. Ed. 2011, 50, 3362−
3374. (b) Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem.
Soc. 2006, 128, 6790−6791. (c) Qiu, D.; Zheng, Z.; Mo, F.; Xiao, Q.;
Tian, Y.; Zhang, Y.; Wang, J. Org. Lett. 2011, 13, 4988−4991.
(d) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.;
Hartwig, J. F. Chem. Rev. 2010, 110, 890−931. (e) Chotana, G. A.;
Rak, M. A.; Smith, M. R., III. J. Am. Chem. Soc. 2005, 127, 10539−
10544. (f) Fatiadi, A. J. Synthesis 1987, 2, 85−127. (g) Zhang, Y.-H.;
Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 14654−14655. (h) Dick, A. R.;
Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300−2301.
(i) Zhang, S.; Luo, F.; Wang, W.; Jia, X.; Hu, M.; Cheng, J. Tetrahedron
Lett. 2010, 51, 3317−3319. (j) Dangel, B. D.; Johnson, J. A.; Sames, D.
J. Am. Chem. Soc. 2001, 123, 8149−8150. (k) McNeill, E.; Du Bois, J. J.
Am. Chem. Soc. 2010, 132, 10202−10204. (l) Murray, R. W.; Iyanar,
K.; Chen, J.; Wearing, J. T. Tetrahedron Lett. 1995, 36, 6415−6418.
(m) O’Malley, D. P.; Yamaguchi, J.; Young, I. S.; Seiple, I. B.; Baran, P.
S. Angew. Chem., Int. Ed. 2008, 47, 3581−3583. (n) Zimmer, H.;
Lankin, D. C.; Horgan, S. W. Chem. Rev. 1971, 71, 229−246.
(7) MetaSite is a computational tool that predicts the site of
metabolism and the isoform selectivity for the main human
cytochromes, see: (a) Cruciani, G.; Carosati, E.; De Boeck, B.;
Ethirajulu, K.; Mackie, C.; Howe, T.; Vianello, R. J. Med. Chem. 2005,
48, 6970−6979. (b) Trunzer, M.; Faller, B.; Zimmerlin, B. J. Med.
Chem. 2009, 52, 329−335.
(8) Godula, K.; Sames, D. Science 2006, 312, 67−72.
(9) Miller-Moslin, K.; Peukert, S.; Jain, R. K.; McEwan, M. A.; Karki,
R.; Llamas, L.; Yusuff, N.; He, F.; Li, Y.; Sun, Y.; Dai, M.; Perez, L.;
Michael, W.; Sheng, T.; Lei, H.; Zhang, R.; Williams, J.; Bourret, A.;
Ramamurthy, A.; Yuan, J.; Guo, R.; Matsumoto, M.; Vattay, A.;
Maniara, W.; Amaral, A.; Dorsch, M.; Kelleher, J. F. J. Med. Chem.
2009, 52, 3954−3968.
(10) (a) Carril, M.; SanMartin, R.; Domínguez, E. Curr. Org. Chem.
2007, 11, 1385−1399. (b) Grant, S. M.; Faulds, D. Drugs 1992, 43,
873−888.
(11) Vree, T. B.; Den Biggelaar-Martea, M. V.; Vervey Van Wissen,
C. P.; Vree, M. L.; Guelen, P. J. Br. J. Clin. Pharmacol. 1993, 35, 467−
472.
(12) (a) For a review on Cu-mediated C-H activation using
molecular oxygen, see: Wendlandt, A. E.; Suess, A. M.; Stahl, S. S.
Angew. Chem., Int. Ed. 2011, 50, 11062−11087. (b) Hoover, J. M.;
Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 16901−16910.
(13) Drug Approvals and Databases, U.S. Food and Drug
(21) (a) For recent exploratory Cu-mediated benzylic oxidations, see:
Wurtele, C.; Sander, O.; Lutz, V.; Waitz, T.; Tuczek, F.; Schindler, S. J.
̈
Am. Chem. Soc. 2009, 131, 7544−7545. (b) Lucas, H. R.; Li, L.;
Narducci Sarjeant, A. A.; Vance, M. A.; Solomon, E. I.; Karlin, K. D. J.
Am. Chem. Soc. 2009, 131, 3230−3245. (c) De Houwer, J.; Tehrani, K.
A.; Maes, B. U. W. Angew. Chem., Int. Ed. 2012, 51, 2745−2748.
(22) The Cu-mediated benzylic oxidation had not been examined on
systems related to 1 and complex drugs.
(14) Lober, S.; Hubner, H.; Tschammer, N.; Gmeiner, P. Trends
̈
̈
Pharmacol. Sci. 2011, 32, 148−157.
(15) (a) Sun, H.; Scott, D. O. ACS Med. Chem. Lett. 2011, 2, 638−
643. (b) Caccia, S. Curr. Drug Metab. 2007, 8, 612−622.
(23) The cleavage of formamides to afford N-dealkyted amines is well
precedented under acidic conditions and mild heating: Vachal, P.;
Jacobsen, E. N. Org. Lett. 2000, 2, 867−870.
(16) Intramolecular oxidation of a copper(II)-hydroperoxo dimethyl-
amine ligand into its corresponding formamide was previously
reported, see: Maiti, D.; Narducci Sarjeant, A. A.; Karlin, K. D. J.
Am. Chem. Soc. 2007, 129, 6720−6721.
(24) Gschwind, H.-P.; Pfaar, U.; Waldmeier, F.; Zollinger, M.; Sayer,
C.; Zbinden, P.; Hayes, M.; Pokorny, R.; Seiberling, M.; Ben-Am, M.;
Peng, B.; Gross, G. Drug Metabol. & Disp. 2005, 33, 1503−1512.
(25) Soledade, M.; Pedras, S.; Yu, Y. Bioorg. Med. Chem. 2008, 16,
8063−8071.
(17) For benzylic oxidations of 1,2,3,4-tetrahydroisoquinolines, see:
(a) Lee, N. H.; Lee, C.-S.; Jung, D.-S. Tetrahedron Lett. 1998, 39,
1385−1388. (b) M.-H. Liu, Y.; Ho, C.-M.; Che, C.-M. Chem. Asian J.
2009, 4, 1551−1561. For Ru-mediated oxidation of norbornane
derivatives or cyclic benzylamines using excess of NaIO4 as oxidant,
see: (c) Memeo, M. G.; Mantione, D. P.; Bovio, B.; Quadrelli, P.
Synthesis 2011, 13, 2165−2174. (d) Bettoni, G.; Carbonara, G.;
Franchini, C.; Tortorella, V. Tetrahedron 1981, 37, 4159−4164. For
Os-mediated oxidation of tertiary amines, see: (e) Fujii, H.; Ogawa,
R.; Jinbo, E.; Tsumura, S.; Nemoto, T.; Nagase, H. Synlett 2009, 14,
2341−2345. For the oxidation of benzo-fused cyclic amines using
nanosized Au clusters stabilized by hydrophilic polymers, see:
(f) Preedasuriyachai, P.; Chavasiri, W.; Sakurai, H. Synlett 2011, 8,
1121−1124. For the oxidation of amides such as 3,4-dihydroisoqui-
nolin-a(2H)-ones and N-Boc protected amines, see: (g) Yoshifuji, S.;
Arakawa, Y. Chem. Pharm. Bull. 1989, 37, 3380−3381. (h) Tanaka, K.
I.; Yoshifuji, S.; Nitta, Y. Chem. Pharm. Bull. 1988, 36, 3125−3129.
For other specialized examples of stockiometric systems, see: (i)
(26) For a review on the synthetic access to oxidized-piperazine
derivatives, see: Dinsmore, C. J.; Beshore, D. C. Tetrahedron 2002, 58,
3297−3312.
(27) Witiak, D. T.; Wei, Y. Prog. Drug. Res. 1990, 35, 249−263.
(28) Pagano, T. G.; Gong, Y.; Kong, F.; Tsao, R.; Fawzi, M.; Zhu, T.
J. Antibiot. 2011, 64, 673−677.
(29) Hu, Y.; Wang, K.; MacMillan, J. B. Org. Lett. 2013, 15, 390−393.
Using Hg: Mohrle, H.; Azodi, K. Pharmazie 2006, 61, 815−822. (j)
̈
Using KMnO4: Markgraf, J. H.; Sangani, P. K.; Finkelstein, M. Synth.
Commun. 1997, 27, 1285−1290.
(18) (a) The S9 fractions used in our study were from 10 different
animal sources: rabit, rat, horse, fowl, dog, bovine, pig, sheep, mouse,
and chicken; the 14 enzymes were obtained through a collaboration
between the Biomedical Research Centre of the University of Dundee
and nine pharmaceutical companies (LINK I consortium): (b) Blake,
J. A. R.; Pritchard, M. P.; Ding, S.; Smith, G. C. M.; Burchell, B.; Wolf,
G
dx.doi.org/10.1021/ja405471h | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX