Scheme 3. Reaction Mechanism
Figure 2. 1-Imino-pyrrole derivatives obtained from the dilithio
reagent 1a and other diazo compounds.
structures is considered the major reason for the lower
product yields.
When cyclic dilithio reagents (1h,i, Scheme 2) were
treated with 2.2 equiv of dipenyldiazomethane, their cor-
responding N-imino tetrahydro iso-indole derivatives 3k
and 3l were obtained. However, in the case of the dilithio
reagent 1j (R = Ph), the unexpected bis(diazo) compound
4 was obtained in 83% isolated yield. Formation of its
corresponding tetrahydroisoindole derivative was not
observed.
Scheme 4. Synthetic Application of 2a
Scheme 2. Reaction of Cyclic Dilithio Reagents with Diphen-
lydiazomethane
Furthermore, as a demonstration of the formation and
synthetic application of 2, transmetalation of 2a with
ZnCl2 was performed. An unprecedented organozinc com-
pound 7was thus obtained in 87% isolated yield (Scheme 4).12
The structure of 7 was identified by single-crystal X-ray
structural analysis (Figure 3).
(12) For reports on structures of organozinc compounds, see: (a)
Uchiyama, M.; Matsumoto, Y.; Nobuto, D.; Furuyama, T.; Yamaguchi,
K.; Morokuma, K. J. Am. Chem. Soc. 2006, 128, 8748. (b) Wooten, A.;
Carroll, P. J.; Maestri, A. G.; Walsh, P. J. J. Am. Chem. Soc. 2006, 128,
4624. (c) Guerrero, A.; Hughes, D. L.; Bochmann, M. Organometallics
2006, 25, 1525. (d) Mulvey, R. E.; Mongin, F.; Uchiyama, M.; Kondo, Y.
Angew. Chem., Int. Ed. 2007, 46, 3802. (e) Sarazin, Y.; Wright, J. A.;
Harding, D. A. J.; Martin, E.; Woodman, T. J.; Hughes, D. L.; Bochmann,
M. J. Organomet. Chem. 2008, 693, 1494. (f) Merkel, S.; Stern, D.; Stalke,
D. Angew. Chem., Int. Ed. 2009, 48, 6350. (g) Clegg, W.; Conway, B.;
Garcιa-Alvarez, P.; Kennedy, A. R.; Klett, J.; Mulvey, R. E.; Russo, L.
Dalton Trans. 2010, 39, 62. (h) MacIntosh, I. S.; Sherren, C. N.; Robertson,
K. N.; Masuda, J. D.; Pye, C. C.; Clyburne, J. A. C. Organometallics 2010,
The reaction mechanism between the dilithio reagent
and diazo compounds was investigated (Scheme 3). First,
we isolated the imtermediate 2a and obtained its NMR
data. The peak at 152.6 ppm in its 13C NMR spectrum
shows that an imine carbon exists in its structure. Then,
this intermediate was quenched with H2O under N2, and
the product 5 was formedand structurally characterized by
single-crystal X-ray analysis (see Supporting Information
for details). When 5 was dissolved and stirred in THF in
air, it was oxidized to afford the product 3b and the diazo
compound 6.11
€
29, 2063. (i) Schmidt, S.; Schulz, S.; Blaser, D.; Boese, R.; Bolte, M.
Organometallics 2010, 29, 6097. (j) Zhou, Y.; Zhang, W.-X.; Xi, Z.
Organometallics 2012, 31, 5546.
(13) (a) Seyferth, D.; Womack, G. B.; Archer, C. M.; Dewan, J. C.
Organometallics 1989, 8, 430. (b) Gunnoe, T. B.; White, P. S.; Templeton,
J. L. Organometallics 1997, 16, 3794. (c) Bailey, P. J.; Liddle, S. T.;
Morrison, C. A.; Parsons, S. Angew. Chem., Int. Ed. 2001, 40, 4463. (d)
Li, X.; Baldamus, J.; Nishiura, M.; Tardif, O.; Hou, Z. Angew. Chem., Int.
Ed. 2006, 45, 8184. (e) Lichtenberg, C.; Jochmann, P.; Spaniol, T. P.;
Okuda, J. Angew. Chem., Int. Ed. 2011, 50, 5753. (f) Lichtenberg, C.; Engel,
J.;Spaniol, T. P.; Englert, U.;Raabe, G.;Okuda, J.J. Am. Chem. Soc. 2012,
(11) (a) Uno, H.; Okada, S.; Suzuki, H. Tetrahedron 1991, 47, 6231.
(b) Klimenko, I. P.; Medvedev, A. F.; Korolev, V. A.; Kolomnikova,
G. D.; Tomilov, Y. V.; Bubnov, Y. N. J. Organomet. Chem. 2009, 694,
2106. (c) Wang, D. H.; Liu, Q.; Chen, B.; Zhang, L. P.; Tung, C. H.; Wu,
L. Z. Chin. Sci. Bull. 2010, 55, 2855.
ꢀ
134, 9805. (g) Menard, G.; Stephan, D. W. Angew. Chem., Int. Ed. 2012, 51,
4409. (h) Peterson, J. K.; MacDonald, M. R.; Ziller, J. W.; Evans, W. J.
Organometallics 2013, 32, 2625.
4184
Org. Lett., Vol. 15, No. 16, 2013