ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Au-Catalyzed Formation of Functionalized
Quinolines from 2‑Alkynyl Arylazide
Derivatives
Colombe Gronnier, Guillaume Boissonnat, and Fabien Gagosz*
ꢀ
Laboratoire de Synthese Organique, UMR 7652 CNRS/Ecole Polytechnique,
Ecole Polytechnique, 91128 Palaiseau, France
Received July 11, 2013
ABSTRACT
A new method for converting 2-alkynyl arylazide derivatives into functionalized polysubstituted quinolines following a gold-catalyzed 1,3-acetoxy
shift/cyclization/1,2-group shift sequence has been developed. This transformation proceeds under mild reaction conditions, is efficient, and
tolerates a large variety of functional groups.
The quinoline motif is of major importance in medicinal
chemistry given its appearance in the structure of numer-
ous natural or synthetic products possessing biological
activities.1 While consequent efforts have been made over
the years to develop a synthetic access to quinolines,2 the
number of methods allowing the efficient and selective
synthesis of polysubstituted quinolines with a good func-
tional group tolerance remains limited.
As part of our work on gold catalysis,3 we recently
reported that 2-alkynyl arylazides 1 could be converted
into indoles 3 via the trapping of an intermediate gold
carbenoid 2 by a nucleophile (Scheme 1).4 On the basis of
these studies, we reasoned that a divergence in reactivity
might potentially operate if an acyloxy group is introduced
at the propargylic position of the substrate (Scheme 1).
Indeed, upon treatment with a gold catalyst, substrate 4
should undergo an alternative and more favorable 1,3-
acetoxy shift5 that would furnish allene 5. A nucleophilic
addition of the azide6 onto this gold-activated species would
then lead to the cyclized intermediate 6 which could subse-
quently evolve into quinoline 9 after a 1,2-shift of the R2
group and regeneration of the catalyst. Cationic intermediate
7could be formed directly from 6(path A) or alternatively via
a gold carbenoid of type 8 (path B). We report herein our
investigations in this field which have led to the development
of a new synthetic route to polyfunctionalized quinolines.7
(5) The 1,3-acyloxy shift is an easy process and should therefore be
more favorable than the 5-endo cyclization leading to the gold carbenoid
2. For reviews on Au-catalyzed acyloxy shifts, see: (a) Shiroodi, R. K.;
Gevorgyan, V. Chem. Soc. Rev. 2013, 42, 4991. (b) Wang, S.; Zhang, G.;
Zhang, L. Synlett 2010, 692.
(6) For the use of azides in Au catalysis, see: (a) Yan, Z.-Y.; Xiao, Y.;
Zhang, L. Angew. Chem., Int. Ed. 2012, 51, 8624. (b) Huo, Z.; Gridnev,
I. D.; Yamamoto, Y. J. Org. Chem. 2010, 75, 1266. (c) Huo, Z.;
Yamamoto, Y. Tetrahedron Lett. 2009, 50, 3651. (d) Gorin, D. J.; Davis,
N. R.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 11260. (e) Hiroya, K.;
Matsumoto, S.; Ashikawa, M.; Ogiwara, K.; Sakamoto, T. Org. Lett.
2006, 8, 5349.
(7) For selected Au-catalyzed synthesis of quinolines and their
derivatives, see: (a) Tu, X.-F.; Gong, L.-Z. Angew. Chem., Int. Ed.
2012, 51, 11346. (b) Gronnier, C.; Odabachian, Y.; Gagosz, F. Chem.
Commun. 2011, 47, 218. (c) Praveen, C.; Jegatheesan, S.; Perumal, P. T.
Synlett 2009, 2795. (d) Hashmi, A. S. K.; Ata, F.; Haufe, P.; Rominger,
F. Tetrahedron 2009, 65, 1919. (e) Liu, X. Y.; Che, C. M. Angew. Chem.,
Int. Ed. 2008, 47, 3805. (f) Yadav, J. S.; Reddy, B. V. S.; Yadav, N. N.;
Gupta, M. K.; Sridhar, B. J. Org. Chem. 2008, 73, 6857. (g) Liu, X.-Y.;
Ding, P.; Huang, J.-S.; Che, C.-M. Org. Lett. 2007, 9, 2645.
(1) (a) Balasubramanian, M.; Keay, J. G. In Comprehensive Hetero-
cyclic Chemistry II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.;
Pergamon Press: Oxford, 1996; Vol. 5, pp 245ꢀ1260. (b) Eicher, T.;
Hauptmann, S. The Chemistry of Heterocycles, 2nd ed.; WileyVCH:
Weinheim, 2003; pp 316ꢀ336.
ꢁ
(2) For a recent review, see: Kouznetsov, V. V.; Vargas Mendez,
ꢁ
ꢁ
L. Y.; Melendez Gomez, C. M. Curr. Org. Chem. 2005, 9, 141.
(3) For selected recent contributions, see: (a) Henrion, G.; Chavas,
T. E. J.; Le Goff, X.; Gagosz, F. Angew. Chem., Int. Ed. 2013, 52, 6277.
(b) Cao, Z.; Gagosz, F. Angew. Chem., Int. Ed. 201310.1002/
anie.201304497. (c) Bolte, B.; Gagosz, F. J. Am. Chem. Soc. 2011, 133,
7696.
(4) (a) Wetzel, A.; Gagosz, F. Angew. Chem., Int. Ed. 2011, 50, 7354.
(b) Lu, B.; Luo, Y.; Liu, L.; Ye, L.; Wang, Y.; Zhang, L. Angew. Chem.,
Int. Ed. 2011, 50, 8358.
r
10.1021/ol4019634
XXXX American Chemical Society