CLUSTER
Chiral 1,2,4-Triazol-5-ylidenes in Asymmetric Olefin Metathesis
1253
Chem. Int. Ed. 2007, 46, 4534; Angew. Chem. 2007, 119,
4618. (h) Cortez, G. A.; Baxter, C. A.; Schrock, R. R.;
Hoveyda, A. H. Org. Lett. 2007, 9, 2871.
The change from N-mesityl group to N-pentafluorophenyl
group affects both steric and electronic factors of NHC li-
gand, but the exact reason for the improvement of stereo-
selectivity is unclear at the present stage of research.
Unfortunately we were unable to obtain a crystal of 8d
which may provide explanation for this observation.
(5) (a) Tiede, S.; Berger, A.; Schlesiger, D.; Rost, D.; Lühl, A.;
Blechert, S. Angew. Chem. Int. Ed. 2010, 49, 3972.
(b) Kannenberg, A.; Rost, D.; Eibauer, S.; Tiede, S.;
Blechert, S. Angew. Chem. Int. Ed. 2011, 50, 3299.
(6) Struble, J. R.; Bode, J. W. Org. Synth. 2010, 87, 362.
(7) Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007,
107, 5606.
(8) (a) Strand, R. B.; Helgerud, T.; Solvang, T.; Dolva, A.;
Sperger, C. A.; Fiksdahl, A. Tetrahedron: Asymmetry 2012,
23, 1350. (b) Zhao, L.; Ma, Y.; Duan, W.; He, F.; Chen, J.;
Song, C. Org. Lett. 2012, 14, 5780.
(9) Ruthenium carbene complexes bearing achiral 1,2,4-triazol-
5-ylidene have been obtained. See: (a) Fürstner, A.;
Ackermann, L.; Gabor, B.; Goddard, R.; Lehmann, C. W.;
Mynott, R.; Stelzer, F.; Thiel, O. R. Chem. Eur. J. 2001, 7,
3236. (b) Trnka, T. M.; Morgan, J. P.; Sanford, M. S.;
Wilhelm, T. E.; Scholl, M.; Choi, T.-L.; Ding, S.; Day, M.
W.; Grubbs, R. H. J. Am. Chem. Soc. 2003, 125, 2546.
(10) Both Hoveyda- and Grubbs-type complexes 6a and 6b
gave very similar results in series of model AROCM
reactions, indicating that introduction of chelating 2-
isopropoxybenzylidene in place of Cy3P does not
The preliminary results obtained by us show that C1-sym-
metric 1,2,4-triazol-5-ylidenes can be used to form chiral
Ag and Ru complexes. Less stable Ru complexes 8c and
8d can be prepared by mixing two stable metallic precur-
sors and used in situ in asymmetric olefin metathesis. Al-
though observed enantioselectivity levels were lower than
those reported for other catalysts described in the litera-
ture,1a,2–5 we hope that further modifications may lead to
increasing the catalysts’ selectivity. Research in this di-
rection is ongoing in our laboratories and results will be
reported in due course.
Acknowledgment
R.G. thanks the Foundation for Polish Science (‘Ventures’ Pro-
gram) for financial support. The project ‘Ventures/2009-4/1’ was
executed within the ‘Ventures’ program of the Foundation for
Polish Science, co-financed by the European Union Regional Deve-
lopment Fund. R.G. and M.P. thank Dr Michał Michalak for dona-
tion of mesitylhydrazine, pentafluorohydrazine, and for GC
measurements.
substantially affect the enantioselectivity of the metathesis
reactions (cf. ref. 5b).
(11) (a) Samojłowicz, C.; Bieniek, M.; Grela, K. Chem. Rev.
2009, 109, 3708. (b) Vougioukalakis, G. C.; Grubbs, R. H.
Chem. Rev. 2010, 110, 1746.
(12) Norman, B. H.; Kroin, J. S. J. Org. Chem. 1996, 61, 4990.
(13) Synthesis of 7b: (S)-5-sec-Butylmorpholin-3-one (13; 230
mg, 1.46 mmol; see ref. 12) was dissolved in anhyd CH2Cl2
(7 mL) and Me3OBF4 (259 mg, 1.75 mmol) was added. The
mixture was stirred at r.t. for 24 h and then cooled to 0 °C.
Sat. aq NaHCO3 (10 mL) was added over 15 min and the
mixture was further stirred at r.t. for 30 min. The mixture
was extracted with CH2Cl2, and the combined organic layers
were washed with H2O and dried over Na2SO4. After
filtration, the solvent was removed under reduced pressure to
afford the crude (S)-3-sec-butyl-5-methoxy-3,6-dihydro-
2H-1,4-oxazine (239 mg, 96%) as a white solid which was
used in the next step without further purification.
Mesitylhydrazine hydrochloride (270 mg, 1.46 mmol) was
dissolved in anhyd MeOH (6 mL). The crude (S)-3-sec-
butyl-5-methoxy-3,6-dihydro-2H-1,4-oxazine (239 mg,
0.48 mmol) was added in one portion followed by HCl (4 M
in 1,4-dioxane; 36 μL, 0.20 mmol, 0.100 equiv) and the
reaction mixture was stirred at r.t. for 24 h. The solvent was
evaporated to give a yellow solid which was dried in high
vacuum. The residue was suspended in chlorobenzene (1.5
mL) and triethyl orthoformate (2 mL, 11.7 mmol) was
added. The mixture was stirred for 4 h at 110 °C and
concentrated in vacuum. After purification by column
chromatography (CH2Cl2–MeOH = 99:1 to 95:5) the desired
product was obtained as an off-white solid (160 mg, 33%).
(14) Kerr, M. S.; Read de Alaniz, J.; Rovis, T. J. Org. Chem.
2005, 70, 5725.
Supporting Information for this article is available online at
m
iotSrat
ungIifoop
r
t
References and Notes
(1) For reviews on asymmetric olefin metathesis, see: (a) Kress,
S.; Blechert, S. Chem. Soc. Rev. 2012, 41, 4389. (b) Schrock,
R. R.; Hoveyda, A. H. Angew. Chem. Int. Ed. 2003, 42,
4592. (c) Hoveyda, A. H.; Schrock, R. R. Chem. Eur. J.
2001, 7, 945. (d) Hoveyda, A. H.; Zhugralin, A. R. Nature
(London) 2007, 450, 243. (e) Cortez, G. A.; Baxter, C. A.;
Schorck, R. R.; Hoveyda, A. H. Org. Lett. 2007, 9, 2871.
(2) (a) Seiders, T. J.; Ward, D. W.; Grubbs, R. H. Org. Lett.
2001, 3, 3225. (b) Funk, T. W.; Berlin, J. M.; Grubbs, R. H.
J. Am. Chem. Soc. 2006, 128, 1840. (c) Berlin, J. M.;
Goldberg, S. D.; Grubbs, R. H. Angew. Chem. Int. Ed. 2006,
45, 7591; Angew. Chem. 2006, 118, 7753.
(3) (a) Fournier, P.-A.; Collins, S. K. Organometallics 2007, 26,
2945. (b) Fournier, P.-A.; Savoie, J.; Stenne, B.; Bødard, M.;
Grandbois, A.; Collins, S. K. Chem. Eur. J. 2008, 14, 8690.
(c) Grandbois, A.; Collins, S. K. Chem. Eur. J. 2008, 14,
9323. (d) Savoie, J.; Stenne, B.; Collins, S. K. Adv. Synth.
Catal. 2009, 351.
(4) (a) Van Veldhuizen, J. J.; Garber, S. B.; Kingsbury, J. S.;
Hoveyda, A. H. J. Am. Chem. Soc. 2002, 124, 4954. (b) Van
Veldhuizen, J. J.; Gillingham, D. G.; Garber, S. B.; Kataoka,
O.; Hoveyda, A. H. J. Am. Chem. Soc. 2003, 125, 12502.
(c) Gillingham, D. G.; Kataoka, O.; Garber, S. B.; Hoveyda,
A. H. J. Am. Chem. Soc. 2004, 126, 12288. (d) Van
Veldhuizen, J. J.; Campbell, J. E.; Giudici, R. E.; Hoveyda,
A. H. J. Am. Chem. Soc. 2005, 127, 6877. (e) Giudici, R. E.;
Hoveyda, A. H. J. Am. Chem. Soc. 2007, 129, 3824.
(f) Gillingham, D. G.; Hoveyda, A. H. Angew. Chem. Int.
Ed. 2007, 46, 3860; Angew. Chem. 2007, 119, 3934.
(g) Cortez, G. A.; Schrock, R. R.; Hoveyda, A. H. Angew.
(15) (a) Arnold, P. L. Heteroat. Chem. 2002, 13, 534. (b) Larsen,
A. O.; Leu, W.; Oberhuber, C. N.; Campbell, J. E.; Hoveyda,
A. H. J. Am. Chem. Soc. 2004, 126, 11130.
(16) Synthesis of 7d: (S)-5-sec-Butylmorpholin-3-one (13; 692
mg, 4.40 mmol) was dissolved in anhyd CH2Cl2 (10 mL) and
Me3OBF4 (651 mg, 4.4 mmol) was added. The mixture was
stirred at r.t. for 24 h. Pentafluorophenyl hydrazine (872 mg,
4.40 mmol) was added in one portion and the mixture was
further stirred for 24 h at r.t. The solvent was evaporated and
© Georg Thieme Verlag Stuttgart · New York
Synlett 2013, 24, 1250–1254