ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
CꢀH Functionalization of Cyclopropanes:
A Practical Approach Employing
a Picolinamide Auxiliary
ꢀ
Daniela Sustac Roman and Andre B. Charette*
ꢀ
Centre in Green Chemistry and Catalysis, Department of Chemistry, Universite de
Montreal, P.O. Box 6128 Station Downtown, Montreal, Quebec H3C 3J7, Canada
ꢀ
ꢀ
ꢀ
Received July 9, 2013
ABSTRACT
A Pd-catalyzed, picolinamide-enabled, and efficient CꢀH arylation of cyclopropanes is described. The reaction can be promoted by either a silver
additive or catalytic pivalic acid in the presence of a carbonate base. Various aryl iodides can be employed as coupling partners, providing
exclusively cis-substituted cyclopropylpicolinamides.
The catalytic transformation of C(sp3)ꢀH bonds is
a continuously growing field in organic synthesis due to
the ubiquity of CꢀH bonds in nature. As such, a plethora
of powerful methods have already been developed, most
of them employing a transition-metal catalyst.1 One sig-
nificant challenge is the regioselectivity of the reaction, and
that has been overcome by the use of directing groups or
auxiliaries.2 Most notably, the picoline and aminoquino-
line carboxamide auxiliaries introduced by Daugulis have
proven to be valuable tools for the synthesis of CꢀC bonds
at the γ-position of the amide nitrogen (Scheme 1).3 These
auxiliaries have also been exploited in the formation of
CꢀN, CꢀO, and CꢀF bonds through the employment of
different metal catalysts.4
Our group has had a long-standing interest in both
the synthesis and functionalization of cyclopropanes5
due to their versatility in medicinal chemistry, in natural
product synthesis, and as scaffolds for other chemical
transformations.6 The rigidity of the cyclopropyl ring
and orbital hybridization leads to a more sp2-like character
(4) For recent examples, please see: (a) Feng, Y.; Wang, Y.;
Landgraf, B.; Liu, S.; Chen, G. Org. Lett. 2010, 12, 3414. (b) Zhao,
Y.; Chen, G. Org. Lett. 2011, 13, 4850. (c) He, G.; Chen, G. Angew.
Chem., Int. Ed. 2011, 50, 5192. (d) He, G.; Zhao, Y.; Zhang, S.; Lu, C.;
Chen, G. J. Am. Chem. Soc. 2011, 134, 3. (e) He, G.; Lu, C.; Zhao, Y.;
Nack, W. A.; Chen, G. Org. Lett. 2012, 14, 2944. (f) Zhao, Y.; He, G.;
Nack, W. A.; Chen, G. Org. Lett. 2012, 14, 2948. (g) Zhang, S.-Y.; He,
G.; Nack, W. A.; Zhao, Y.; Li, Q.; Chen, G. J. Am. Chem. Soc. 2013, 135,
2124. (h) Ano, Y.; Tobisu, M.; Chatani, N. J. Am. Chem. Soc. 2011, 133,
12984. (i) Aihara, Y.; Chatani, N. Chem. Sci 2013, 4, 664. (j) Rouquet,
G.; Chatani, N. Chem. Sci. 2013, 4, 2201. (k) Hasegawa, N.; Shibata, K.;
Charra, V.; Inoue, S.; Fukumoto, Y.; Chatani, N. Tetrahedron 2013, 69,
4466. (l) Shang, R.; Ilies, L.; Matsumoto, A.; Nakamura, E. J. Am.
Chem. Soc. 2013, 135, 6030. (m) Truong, T.; Klimovica, K.; Daugulis, O.
J. Am. Chem. Soc. 2013, 135, 9342.
(5) (a) Charette, A. B.; Juteau, H.; Lebel, H.; Molinaro, C. J. Am.
Chem. Soc. 1998, 120, 11943. (b) Charette, A. B.; Gagnon, A.; Fournier,
J.-F. J. Am. Chem. Soc. 2001, 124, 386. (c) Lindsay, V. N. G.; Fiset, D.;
Gritsch, P. J.; Azzi, S.; Charette, A. B. J. Am. Chem. Soc. 2013, 135,
1463. (d) Beaulieu, L.-P. B.; Schneider, J. F.; Charette, A. B. J. Am.
Chem. Soc. 2013, 135, 7819.
(1) (a) Ackermann, L. Chem. Commun. 2011, 46, 4866. (b) Li, H.; Li,
B.-J.; Shi, Z.-J. Catal. Sci. Technol 2011, 1, 191. (c) Baudoin, O. Chem.
Soc. Rev. 2011, 40, 4902. (d) Mousseau, J. J.; Charette, A. B. Acc. Chem.
Res. 2013, 46, 412.
(2) For selected examples and reviews: (a) Dick, A. R.; Hull, K. L.;
Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300. (b) Giri, R.; Chen, X.;
Yu, J.-Q. Angew. Chem., Int. Ed. 2005, 44, 2112. (c) Kalyani, D.;
Sanford, M. S. Org. Lett. 2005, 7, 4149. (d) Lyons, T. W.; Sanford,
M. S. Chem. Rev. 2010, 110, 1147. (e) Engle, K. M.; Mei, T.-S.; Wasa,
M.; Yu, J.-Q. Acc. Chem. Res. 2011, 45, 788. (f) Ackermann, L.;
Hofmann, N.; Vicente, R. Org. Lett. 2011, 13, 1875. (g) Rousseau, G.;
Breit, B. Angew. Chem., Int. Ed. 2011, 50, 2450. (h) Zhang, X.-G.; Dai,
H.-X.; Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc. 2012, 134, 11948. (i) Li,
G.; Leow, D.; Wan, L.; Yu, J.-Q. Angew. Chem., Int. Ed. 2013, 52, 1245.
(j) Chan, L. Y.; Kim, S.; Ryu, T.; Lee, P. H. Chem. Commun. 2013, 49,
4682.
(6) (a) Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B.
Chem. Rev. 2003, 103, 977. (b) Rubin, M.; Rubina, M.; Gevorgyan, V.
Chem. Rev. 2007, 107, 3117. (c) Gagnon, A.; Duplessis, M.; Fader, L.
Org. Prep. Proced. Int. 2010, 42, 1.
(3) (a) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc.
2005, 127, 13154. (b) Shabashov, D.; Daugulis, O. J. Am. Chem. Soc.
2010, 132, 3965.
r
10.1021/ol401931s
XXXX American Chemical Society