ChemComm
Communication
Table 4 Synthesis of benzo[b][1,6]oxazocin-2-ones and the proposed mechanisma
Notes and references
1 (a) Y. Arikawa, H. Nishida, O. Kurasawa, A. Hasuoka, K. Hirase,
N. Inatomi, Y. Hori, J. Matsukawa, A. Imanishi, M. Kondo, N. Tarui,
T. Hamada, T. Takagi, T. Takeuchi and M. Kajino, J. Med. Chem.,
2012, 55, 4446; (b) R. B. Thompson, FASEB J., 2001, 15, 1671.
2 (a) K. L. Kees, J. J. Fitzgerald, K. E. Steiner, J. F. Mattes, B. Mihan,
T. Tosi, D. Mondoro and M. L. McCaleb, J. Med. Chem., 1996,
39, 3920; (b) T. D. Penning, J. J. Talley, S. R. Bertenshaw,
J. S. Carter, P. W. Collins, S. Docter, M. J. Graneto, L. F. Lee,
J. W. Malecha, J. M. Miyashiro, R. S. Rogers, D. J. Rogier, S. S. Yu,
G. D. Anderson, E. G. Burton, J. N. Cogburn, S. A. Gregory,
C. M. Koboldt, W. E. Perkins, K. Seibert, A. W. Veenhuizen,
Y. Y. Zhang and P. C. Isakson, J. Med. Chem., 1997, 40, 1347;
(c) S. A. F. Rostom, Bioorg. Med. Chem., 2010, 18, 2767; (d) A. A.
Fadda, E. Abdel-Latif and R. E. El-Mekawy, Eur. J. Med. Chem., 2009,
44, 1250; (e) S. Kiyonaka, K. Kato, M. Nishida, K. Mio, T. Numaga,
Y. Sawaguchi, T. Yoshida, M. Wakamori, E. Mori, T. Numata, M. Ishii,
H. Takemoto, A. Ojida, K. Watanabe, A. Uemura, H. Kurose, T. Morii,
T. Kobayashi, Y. Sato, C. Sato, I. Hamachi and Y. Mori, Proc. Natl.
Acad. Sci. U. S. A., 2009, 106, 5400.
Entry
R
Yieldb [%]
Entry
R
Yieldb [%]
1
2
3
4
5
Ph
73, 5a
83, 5b
87, 5c
92, 5d
76, 5e
6
7
2-Br-Ph
3-CF3-Ph
4-OCH3-Ph
4-OAc-Ph
4-N(CH3)2-Ph
74, 5f
87, 5g
60, 5h
56, 5i
70, 5j
4-Cl-Ph
4-F-Ph
4-Br-Ph
3-Br-Ph
8c
9c
10c
a
Reaction conditions: MBHAs (0.3 mmol), 10 (0.3 mmol) and MeOH
(2 mL) were stirred at rt for 15 min, then Na2CO3 was added and stirred
at 40 1C. Yield of the isolated product. The mixture should be stirred
at 60 1C.
b
c
3 (a) S. Hagishita, M. Yamada, K. Shirahase, T. Okada, Y. Murakami,
Y. Ito, T. Matsuura, M. Wada, T. Kato, M. Ueno, Y. Chikazawa,
K. Yamada, T. Ono, I. Teshirogi and M. Ohtani, J. Med. Chem.,
1996, 39, 3636; (b) R. Oslund, N. Cermak and M. Gelb, J. Med. Chem.,
2008, 51, 4708.
4 (a) O. Kim, Y. Jeong, H. Lee, S.-S. Hong and S. Hong, J. Med. Chem.,
2011, 54, 2455; (b) A. Kamal, J. S. Reddy, M. J. Ramaiah, D. Dastagiri,
E. V. Bharathi, M. V. P. Sagar, S. N. C. V. L. Pushpavalli, P. Ray and
M. Pal-Bhadra, Med. Chem. Commun., 2010, 1, 355; (c) J. B. Veron,
H. Allouchi, C. E. Gueiffier, R. Snoeck, G. A. E. De Clercq and
A. Gueiffier, Bioorg. Med. Chem., 2008, 16, 9536; (d) A. Scribner,
R. Dennis, J. Hong, S. Lee, D. McIntyre, D. Perrey, D. Feng,
M. Fisher, M. Wyvratt, P. Leavitt, P. Liberator, A. Gurnett, C. Brown,
J. Mathew, D. Thompson, D. Schmatz and T. Biftu, Eur. J. Med. Chem.,
2007, 42, 1334; (e) G. Trapani, M. Franco, L. Ricciardi, A. Latrofa,
G. Genchi, E. Sanna, F. Tuveri, E. Cagetti, G. Biggio and G. Liso,
J. Med. Chem., 1997, 40, 3109.
5 (a) M. Zhang, H. Neumann and M. Beller, Angew. Chem., Int. Ed.,
2013, 52, 597; (b) M. P. Huestis, L. Chan, D. R. Stuart and K. Fagnou,
Angew. Chem., Int. Ed., 2011, 50, 1338; (c) J. Zeng, Y. Bai, S. Cai, J. Ma
and X. Liu, Chem. Commun., 2011, 47, 12855; (d) E. Lourdusamy,
L. Yao and C. M. Park, Angew. Chem., Int. Ed., 2010, 49, 7963;
(e) S. Rakshit, F. W. Patureau and F. Glorius, J. Am. Chem. Soc.,
2010, 132, 9585; ( f ) D. R. Stuart, P. Alsaben, M. Kuhn and K. Fagnou,
J. Am. Chem. Soc., 2010, 132, 18326; (g) X. Xin, D. Wang, X. Li and
B. Wang, Angew. Chem., Int. Ed., 2012, 51, 1693; (h) Y. Jiang,
W. C. Chan and C. M. Park, J. Am. Chem. Soc., 2012, 134, 4104.
6 (a) K. Fuchibe, M. Takahashi and J. Ichikawa, Angew. Chem., Int. Ed.,
2012, 51, 12059; (b) D. J. Babinski, X. Bao, M. E. Arba, B. Chen,
D. A. Hrovat, W. T. Borden and D. E. Frantz, J. Am. Chem. Soc., 2012,
134, 16139; (c) H. Zou, H. Zhu, J. Shao, J. Wu, W. Chen,
M. A. Giulianotti and Y. Yu, Tetrahedron, 2011, 67, 4887; (d) J. Hu,
Y. Cheng, Y. Yang and Y. Rao, Chem. Commun., 2011, 47, 10133;
(e) J. J. Neumann, M. Suri and F. Glorius, Angew. Chem., Int. Ed., 2010,
49, 7790; ( f ) B. S. Gerstenberger, M. R. Rauckhorst and J. T. Starr,
Org. Lett., 2009, 11, 2097.
outlined in Table 4. The reaction is initiated by Michael addition
of the primary amino group of 10 as the nucleophilic center to
MBHAs. This is followed by elimination of acetate in an overall
SN20 reaction and two-step rearrangements to generate the
intermediate VIII. Subsequently, the phenolic hydroxyl serves
as another nucleophile attacking the carbonyl (d site) to form IX
followed by an elimination to afford the eight-membered
heterocyclic benzo[b][1,6]oxazocin-2-ones which have not been
reported before (Table 4). As shown in Table 4, an increase
in reaction temperature from 40 1C to 60 1C is required for
the MBHAs with the electron-donating groups (entries 8–10).
Even so the isolated yields are lower than those with electron-
withdrawing groups. Unexpectedly, the corresponding target
compound cannot be achieved when MBHAs contain a furyl
substituent.
In summary, we have developed facile and regiospecific
routes to synthesize five series of heterocycles with extraordinary
structural diversity starting from the same highly efficient synthons
as MBHAs. Interestingly, the benzo[b][1,6]oxazocin-2-one scaf-
fold has never been reported. Notably, after the first Michael
addition at the a position of MBHAs, all of the four subsequent
potential electrophilic sites (a, b, g, d) can undergo another
nucleophilic attack to form heterocyclic compounds, such as
imidazo[1,2-a]pyridines (1, a/a), indolizines (2, a/b), pyrroles
(3, a/g), pyrazoles (4, a/g), and benzo[b][1,6]oxazocin-2-ones
(5, a/d). The results described herein provide insights into the
property of MBHAs and give an excellent opportunity to con-
struct diversified heterocycles by reaction with a broad range of
bifunctional nucleophiles.
¨
7 (a) H. Zhu, J. Stockigt, Y. Yu and H. Zou, Org. Lett., 2011, 13, 2792;
´
´
(b) J. Barluenga, G. Lonzi, L. Riesgo, L. A. Lopez and M. Tomas, J. Am.
Chem. Soc., 2010, 132, 13200.
8 (a) D. K. Nair, S. M. Mobin and I. N. Namboothiri, Org. Lett., 2012,
`
14, 4580; (b) O. N. Burchak, L. Mugherli, M. Ostuni, J. J. Lacapere and
This work was supported by National Natural Science Foun-
dation of China (21272207), Natural Science Foundation of
Zhejiang Province (LY12H30006), and Zhejiang Qianjiang talent
M. Y. Balakirev, J. Am. Chem. Soc., 2011, 133, 10058; (c) N. Chernyak
and V. Gevorgyan, Angew. Chem., Int. Ed., 2010, 49, 2743; (d) L. Ma,
X. Wang, W. Yu and B. Han, Chem. Commun., 2011, 47, 11333.
9 (a) D. K. Nair, S. M. Mobin and I. N. N. Namboothiri, Tetrahedron
Lett., 2012, 53, 3349; (b) R. J. Reddy and K. Chen, Org. Lett., 2011,
13, 1458; (c) W. Y. Huang, Y. C. Chen and K. Chen, Chem.–Asian J.,
2012, 7, 688; (d) L. F. Yeh, S. Anwar and K. Chen, Tetrahedron, 2012,
68, 7317; (e) K. Kaur and I. N. Namboothiri, Chimia, 2012, 66, 913;
( f ) T. Kumar, S. M. Mobin and I. N. Namboothiri, Tetrahedron, 2013,
69, 4964.
¨
plan (2011R10023). We thank Prof. Dr Joachim Stockigt, Prof.
Dr Yongping Yu and Prof. Dr Sunliang Cui (Zhejiang University,
China) for valuable discussions and Dr Marc A. Giulianotti
(Torrey Pines Institute for Molecular Studies, USA) for proof-
reading the manuscript.
c
7740 Chem. Commun., 2013, 49, 7738--7740
This journal is The Royal Society of Chemistry 2013