Communications
[1] J. F. Stoddart, Carbohydr. Res. 1989, 192, xii–xvi.
[2] Comprehensive Supramolecular Chemistry, (Eds.: J. L. Davies, J. E. D.
MacNicol, D. D. Vögtl), Elsevier: Oxford, 1996; vol. 3.
[3] G. Gattuso, S. A. Nepogodie, J. F. Stoddart, Chem. Rev. 1998, 98, 1919–
1958.
[4] H. Bender, Advances in Biotechnological Process, (Ed. A. Mizrahi), Alan R.
method will enable the large-scale synthesis of natural and
unnatural cyclic oligosaccharides. Consideration of the scope
and limitations of this protocol is under investigation in our
laboratory.
1
2
3
4
Liss, Inc., New York, 1986; 6, 31–71.
5
[5] a) J. Szejtli, Chem. Rev. 1998, 98, 1743–1754; b) J. Szejtli, Pure Appl.
Chem. 2004, 76, 1825-; c) G. Crini, Chem. Rev. 2014, 114, 10940–10975.
[6] a) Y. Takahashi, T. Ogawa, Carbohydr. Res. 1987, 169, 127–149; b) M.
Mori, Y. Ito, T. Ogawa, Tetrahedron Lett. 1989, 30, 1273–1276; c) M. Mori,
Y. Ito, T. Ogawa, Tetrahedron Lett. 1990, 31, 3029–3030; d) M. Mori, Y.
Ito, J. Uzawa, T. Ogawa, Tetrahedron Lett. 1990, 31, 3191–3194.
[7] G. Excoffier, M. Paillet, M. Vignon, Carbohydr. Res. 1985, 135, C10-C11.
[8] P. M. Collins, M. H. Ali, Tetrahedron Lett. 1990, 31, 4517–4520.
[9] T. Nakagawa, K. Ueno, M. Kashiwa, J. Watanabe, Tetrahedron Lett. 1994,
35, 1921–1924.
[10] M. Wakao, K. Fukase, S. Kusumoto, J. Org. Chem. 2002, 67, 8182–8190.
[11] a) M. Nishizawa, M. Imagawa, Y. Kan, H. Yamada, Tetrahedron Lett. 1991,
32, 5551–5554; b) M. Nishizawa, H. Imagawa, E. Morikumi, S. Hatakeya-
ma, H. Yamada, Chem. Pharm. Bull. 1994, 42, 1365–1366; c) A. Dondoni,
M. C. Scherrmann, J. Org. Chem. 1994, 59, 6404–6412; d) A. Dondoni, A.
Marra, Chem. Commun. 1999, 2133–2145; e) A. Dondoni, A. Marra, M. C.
Scherrmann, V. Bertolasi, Chem. Eur. J. 2001, 7, 1371–1382; f) L. Fan, O.
Hindsgaul, Org. Lett. 2002, 4, 4503–4506; g) K. Kim, B. Y. Lee, S. H. Yoon,
H. Jeon, J. Y. Baek, K. S. Jeong, Org. Lett. 2008, 10, 2373–2376.
[12] a) M. L. Gening, D. V. Titov, A. A. Grachev, A. G. Gerbst, O. N. Yudina,
A. S. Shashkov, A. O. Chizhov, Y. E. Tsvetkov, N. E. Nifantiev, Eur. J. Org.
Chem. 2010, 2465–2475; b) D. V. Titov, M. L. Gening, A. G. Gerbst, A. O.
Chizhov, Y. E. Tsvetkov, N. E. Nifantiev, Carbohydr. Res. 2013, 381, 161–
178; c) M. L. Gening, Y. E. Tsvetkov, D. V. Titov, A. G. Gerbst, O. N. Yudina,
A. A. Grachev, A. S. Shashkov, S. Vidal, A. Imberty, T. Saha, D. Kand, P.
Talukdar, G. B. Pier, N. E. Nifantiev, Pure Appl. Chem. 2013, 85, 1879–
1891.
[13] a) R. Noyori, I. Kurimoto, J. Org. Chem. 1986, 51, 4320–4322; b) C.
Amatore, A. Jutand, J.-M. Mallet, G. Meyer, P. Sinaÿ, J. Chem. Soc. Chem.
Commun. 1990, 718–719; c) G. Balavoine, A. Gref, J.-C. Fischer, A.
Lubineau, Tetrahedron Lett. 1990, 31, 5761–5764; d) T. Nokami, K. Saito,
J. Yoshida, Carbohydr. Res. 2012, 363, 1–6.
[14] a) T. Nokami, R. Hayashi, Y. Saigusa, A. Shimizu, C. Y. Liu, K.-K. T. Mong, J.
Yoshida, J. Org. Lett. 2013, 15, 4520–4523; b) T. Nokami, Y. Isoda, N.
Sasaki, A. Takaiso, S. Hayase, T. Itoh, R. Hayashi, A. Shimizu, J. Yoshida,
Org. Lett. 2015, 17, 1525–1528; c) Y. Isoda, N. Sasaki, K. Kitamura, S.
Takahashi, S. Manmode, N. Takeda-Okuda, J. Tamura, T. Nokami, T. Itoh,
Beilstein J. Org. Chem. 2017, 13, 919–924; d) S. Manmode, T. Sato, N.
Sasaki, I. Notsu, S. Hayase, T. Nokami, T. Itoh, Carbohydr. Res. 2017, 450,
44–48; e) S. Manmode, M. Kato, T. Ichiyanagi, T. Nokami, T. Itoh, Asian J.
Org. Chem. 2018, 7, 1802–1805; f) Y. Isoda, K. Kitamura, S. Takahashi, T.
Nokami, T. Itoh, ChemElectroChem 2019, 6, in press. DOI: 10.1002/
celc.201900215
6
7
8
9
Experimental Section
The electrochemical synthesis of cyclotetrakis-(1!6)-(3-O-acetyl-4-
O-benzyl-2-deoxy-2-phthalimido-β-D-glucop-yranosyl) (6β) was car-
ried out in an H-type divided cell (4G glass filter) equipped with a
carbon felt anode (Nippon Carbon JF-20-P7) and a platinum plate
cathode (10 mm×20 mm). In the anodic chamber were placed 4-
Fluorophenyl-3-O-acetyl-4-O-benzyl-2-deoxy-2-phthalimido-β-D-
glucopyranosyl-(1!6)-3-O-acetyl-4-O-benzyl-2-deoxy-2-phthalimi-
do-β-D-glucopyranosyl-(1!6)-3-O-acetyl-4-O-benzyl-2-deoxy-2-
phthalimido-β-D-glucopyranosyl-(1!6)-3-O-acetyl-4-O-benzyl-2-de-
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
oxy-2-phthalimido-1-thio-β-D-glucopyranoside
5b
(0.072 g,
0.039 mmol), Bu4NOTf (0.195 g, 0.50 mmol) and CH2Cl2 (5.0 mL). In
the cathodic chamber were placed trifluoromethanesulfonic acid
(3.5 μL), Bu4NOTf (0.195 g, 0.50 mmol) and CH2Cl2 (5.0 mL). The
constant current electrolysis (8.0 mA (current density: 2.0 mA/cm2),
°
43 V (electrode distance: 4.5 cm)) was carried out at À 80 C with
magnetic stirring until 1.6 F/mol of electricity was consumed. After
°
the electrolysis, the temperature was raised to 0 C and Et3N
(0.5 mL) was added and the mixture was evaporated under reduced
pressure and extracted five times with ethyl acetate. The extract is
then evaporated under reduced pressure and kept under strong
vacuum for extreme dryness to furnish desired cyclic oligosacchar-
ide 6β in 81% isolated yield (54 mg, 0.031 mmol). 1H NMR
(pyridine-d5, 600 MHz) δ 1.61 (s, 3 H), 3.94 (pseudo-d, J=7.8 Hz, 1
H), 4.08 (t, J=7.8 Hz, 1 H), 4.31 (d, J=10.8 Hz, 1 H), 4.38 (pseudo-d,
J=10.8 Hz, 1 H), 4.47 (pseudo-d, J=10.8 Hz, 1 H), 4.60 (pseudo-d, J=
9.6 Hz, 1 H), 4.76 (td, J=11.4, 5.4 Hz, 1 H), 6.04 (d, J=7.8 Hz, 1 H),
6.13 (td, J=12.0, 3.0 Hz, 1 H), 7.00 (bd, J=2.4 Hz, 2 H), 7.14 (bd, J=
1.8 Hz, 2 H), 7.35 (s, 1 H), 7.42 (s, 1 H), 7.58 (s, 1 H), 7.64 (s, 1 H), 7.77
(s, 1 H); 13C NMR (pyridine-d5, 150 MHz) δ 170.9, 169.1, 168.4, 138.6,
136.1, 128.9, 128.3, 124.2, 99.1, 77.5, 75.5, 75.3, 74.2, 69.6, 56.0, 20.6;
HRMS (ESI) m/z calcd for C92H84N4O28K [M+K]+, 1731.4904; found,
1731.4893.
Acknowledgements
[15] D. K. Hunt, P. H. Seeberger, Org. Lett. 2002, 16, 2751–2754.
[16] G. H. Veeneman, S. H. van Leeuwen, J. H. van Boom, Tetrahedron Lett.
1990, 31, 1331–1334.
[17] T. Nokami, A. Shibuya, H. Tsuyama, S. Suga, A. A. Bowers, D. Crich, J.
Yoshida, J. Am. Chem. Soc. 2007, 129, 10922–10928.
[18] Solubility of cyclic oligoglucosamines in conventional organic solvents
was so low that we could purify the com-pound by washing the crude
product with EtOAc. The β-isomer of tetrasaccharide 6β has the lowest
solubility among them.
[19] HCl/Et2O mediated hydrolysis of acetate resulted mixture of mono, di-
and tri-acetate protected tetrasaccharide detected by ESI-MS. The rate
of hydrolysis of the acetyl group of the primary hydroxyl group is faster
than that of secondary hydroxyl group, thus we considered that the
primary alcohol was fully hydrolyzed. Contrary, Zemplén’s condition
gave complete deacetalized product; however, insolubility of the
compound in CH2Cl2 renders its use for cyclization.
The study has been financially supported by the Grant-in-Aid for
Scientific Research on Innovative Areas: “Middle Molecular
Strategy” (No. 2707) from the JSPS (No. JP15H05844) and the
Presidential Fund of Tottori University. The authors acknowledge
fruitful suggestion of Professor Mahito Atobe of Yokohama Na-
tional University. The authors also thank KOGANEI corporation for
the development of the latest version of the automated elec-
trochemical synthesizer.
Conflict of Interest
The authors declare no conflict of interest.
Keywords: cyclic
glycosylation
stereoselectivity
oligosaccharides
glucosamine automated synthesis
·
electrochemical
·
·
·
Manuscript received: May 27, 2019
ChemistryOpen 2019, 8, 869–872
872
© 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA