could be constructed through sequential base-catalytic
asymmetric conjugate reactions between enones and
N-monosubstituted hydrazones using an umpolung
strategy,5 intramolecular aminal formation, and subse-
quent dehydrationinonepot(Figure1),whichcouldenrich
asymmetric access to this type of chiral diaza-heterocycle.6
Hydrazones, which show very diverse reactivity, can be
used as formyl anion equivalents in organic synthesis,
where they participate in nucleophileꢀelectrophile interac-
tions.7 Conventionally, N,N-dialkylhydrazones were ap-
plied in the total synthesis of natural products as practical
chiral auxiliary reagents8 and have been reported as useful
ligands and catalysts9 in asymmetric reactions. Besides,
differing from the reactions where they acted as electro-
philes,10 conjugate additions where N,N-dialkylhydrazones
were used as nucleophiles have been realized recently.11ꢀ13
In comparison, asymmetric conjugate addition of
N-monosubstituted hydrazones in organocatalysis still
remains problematic and challenging due to the competi-
tive aza-Michael addition14 and carbo-Michael addition15
(formal diaza-ene reaction). The site selectivity was depen-
dent on the N-monosubstituted hydrazones used in each
organocatalytic reaction.
Herein, our ongoing interest was extended to an efficient
and highly enantioselective formal diazaꢀene reaction be-
tween N-monosubstituted hydrazones with broad substrate
variables and enones, avoiding a competitive reversible16
aza-Michael reaction simultaneously, which have not been
reported to the best of our knowledge.
Table 1. Reaction Optimizationa
(4) For selected examples on asymmetric synthesis of hydropyrida-
zines: (a) Shen, L.-T.; Sun, L.-H.; Ye, S. J. Am. Chem. Soc. 2011, 133,
15894–15897. (b) Xu, X.; Zavalij, P. Y.; Doyle, M. P. Angew. Chem., Int.
Ed. 2012, 51, 9829–9833. (c) Das, A.; Volla, C. M. R.; Atodiresei, I.;
Bettray, W.; Rueping, M. Angew. Chem., Int. Ed. 2013, 52, 8008–8011.
(5) For reviews on umpolung strategies, see: (a) Grobel, B. T.;
Seebach, D. Synthesis 1977, 357–402. (b) Seebach, D. Angew. Chem.,
Int. Ed. Engl. 1979, 18, 239–258. (c) Enders, D.; Balensiefer, T. Acc.
Chem. Res. 2004, 37, 534–541. (d) Bugaut, X.; Glorius, F. Chem. Soc.
Rev. 2012, 41, 3511–3522.
(6) For selected examples on the synthesis of chiral diaza-heterocycles
catalyzed by a transition metal, see: (a) Kanemasa, S.; Kanai, T.
J. Am. Chem. Soc. 2000, 122, 10710–10711. (b) Yamashita, Y.; Kobayashi,
K. J. Am. Chem. Soc. 2004, 126, 11279–11282. (c) Sibi, M. P.; Stanley,
L. M.; Jasperse, C. P. J. Am. Chem. Soc. 2005, 127, 8276–8277. (d) Kano,
T.; Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc. 2006, 128, 2174–2175.
For selected examples on synthesis of chiral aza-heterocycles catalyzed by
T
time
(h)
yield
(%)b
ee of
entry
cat.
4a/4b (°C)
5/50
5/50(%)c
1
1aꢀ1e
2a
2b
2c
4a
4a
4a
4a
4a
4a
4a
4a
4a
4a
4a
4b
rt
rt
rt
rt
rt
rt
rt
rt
rt
0
24
24
24
24
3
44ꢀ58d <1/99 n.d./0
€
an organocatalyst, see: (e) Muller, S.; List, B. Angew. Chem., Int. Ed. 2009,
2
96
97
96
96
95
95
94
95
94
90
94
3/97
n.d./0
€
ꢀ
48, 9975–9978. (f) Muller, S.; List, B. Synthesis 2009, 2171–2178. (g) Mahe,
3
<1/99 n.d./0
40/60 90/0
ꢁ
O.; Dez, I.; Levacher, V.; Briere, J.-F. Angew. Chem., Int. Ed. 2010, 49,
7072–7075. (h) Campbell, N. R.; Sun, B.; Singh, R. P.; Deng, L. Adv. Synth.
4
5
2c
7/93
89/0
Catal. 2011, 353, 3123–3128.
(7) Forreviews, see:Brehme, R.;Enders, D.;Fernandez, R.;Lassaletta,
J. M. Eur. J. Org. Chem. 2007, 5629–5660.
6e
7f
8g
9
2c
24
24
48
72
72
72
72
38/62 90/0
42/58 90/0
2c
(8) For excellent reviews on hydrazones used as practical chiral
auxiliary reagents in total synthesis: (a) Job, A.; Janeck, C. F.; Bettray,
W.; Peters, R.; Enders, D. Tetrahedron2002, 58, 2253–2329. (b) Samment,
K.; Gastl, C.; Baro, A.; Laschat, S.; Fischer, P.; Fetting, I. Adv. Synth.
Catal. 2010, 352, 2281–2290.
(9) For an excellent review on hydrazones used as ligands and
catalysts: Lazny, R.; Nodzewska, A. Chem. Rev. 2010, 110, 1386–1434.
(10) For reviews, also see ref 7and: (a) Enders, D.; Bolkenius, M.;
2c
93/7
96/n.d.
2c
80/20 90/0
27/73 92/0
10
11
12h
2c
2c
ꢀ40
rt
2/98
n.d./0
2c
>99/1 90/n.d.
a Reaction conditions: 0.20 mmol of 3a, 0.30 mmol of 4a, catalyst
(10 mol %), and acid (20 mol %) were stirred in CPME (C = 0.5 M) at rt.
b Yield was determined after chromatography. c Enantiomeric excess
was determined by chiral HPLC. d Yields for catalysts 1aꢀ1e are 44%,
55%, 58%, 51%, 58% respectively. e 10 mol % acid. f 30 mol % acid.
g 160 mol % acid. h 20 mol % catalyst and 40 mol % acid. The ratio of the
two products was determined by 1H NMR of the crude reaction and
confirmed by chiral HPLC. All products’ dr were >20/1. CPME =
Cyclopentyl methyl ether.
ꢀ
ꢀ
Vazquez, J.; Lassaletta, J. M.; Fernandez, R. J. Prakt. Chem. 1998, 340,
ꢀ
281–285. (b) Fernandez, R.; Lassaletta, J. M. Synlett 2000, 1228–1240.
ꢀ
(11) (a) Lassaletta, J. M.; Fernandez, R.; Martın-Zamora, E.; Pareja, C.
ꢀ
Tetrahedron Lett. 1996, 37, 5787–5790. (b) Fernandez, R.; Martın-Zamora,
ꢀ
E.; Pareja, C.; Vazquez, J.; Dıez, E.; Monge, A.; Lassaletta, J. M. Angew.
Chem., Int. Ed. 1998, 37, 3428–3430. (c) Pareja, C.; Martın-Zamora, E.;
ꢀ
Fernandez, R.; Lassaletta, J. M. J. Org. Chem. 1999, 64, 8846–8854. (d)
ꢀ
Fernandez, R.; Martın-Zamora, E.; Pareja, C.; Lassaletta, J. M. J. Org.
~
Chem. 2001, 66, 5201–5207. (e) Crespo-Pena, A.; Martın-Zamora, E.;
ꢀ
Fernandez, R.; Lassaletta, J. M. Chem.;Asian J. 2011, 6, 2287–2290.
ꢀ
(12) Herrera, R. P.; Monge, D.; Martın-Zamora, E.; Fernandez, R.;
Lassaletta, J. M. Org. Lett. 2007, 9, 3303–3306.
We initiated our studies by exploring the nucleophilic
character of N-monosubstituted hydrazones 4. Choosing
the model reaction between compounds 3a and 4a, we
focused our studies on a series of achiral amines with
(13) (a) Dixon, D.; Tillman, A. L. Synlett 2005, 2635–2638. (b)
€
Rueping, M.; Sugiono, E.; Theissmann, T.; Kuenkel, A.; Kockritz, A.;
Pews-Davtyan, A.; Nemati, N.; Beller, M. Org. Lett. 2007, 9, 1065–1068.
(c) Hashimoto, T.; Hirose, M.; Maruoka, K. J. Am. Chem. Soc. 2008,
130, 7556–7557.
(14) (a) Perdicchia, D.; Jørgensen, K. A. J. Org. Chem. 2007, 72, 3565–
3568. (b) Gogoi, S.; Zhao, C.-G.; Ding, D. Org. Lett. 2009, 11, 2249–2252.
(16) For examples on the reversible addition step of the NH group of
aza-Michael reactions, see refs 6eꢀ6h and 14; for reviews, see: (a)
Vicario, J. L.; Badia, D.; Carrillo, L.; Etxebarria, J.; Reyes, E.; Ruiz,
N. Org. Prep. Proced. Int. 2005, 37, 513–518. (b) Enders, D.; Wang, C.;
Liebich, J. X. Chem.;Eur. J. 2009, 15, 11058–11076.
ꢀ
(15) (a) Crespo-Pena, A.; Monge, D.; Martın-Zamora, E.; Alvarez,
~
ꢀ
E.; Fernandez, R.; Lassaletta, J. M. J. Am. Chem. Soc. 2012, 134, 12912–
ꢀ
12915. (b) Fernandez, M.; Uria, U.; Vicario, J. L.; Reyes, E.; Carrillo, L.
J. Am. Chem. Soc. 2012, 134, 11872–11875.
B
Org. Lett., Vol. XX, No. XX, XXXX