Journal of the American Chemical Society
Article
J.-Y.; Cao, Z.-L.; Li, H.; Zhang, Y.-F. Synthesis 2010, 1280−1284.
(d) Huang, Y.-B.; Yang, C.-T.; Yi, J.; Deng, X.-J.; Fu, Y.; Liu, L. J. Org.
Chem. 2011, 76, 800−810 (one example).
ACKNOWLEDGMENTS
■
This work was supported by the Gordon and Betty Moore
Foundation (grant to J.C.P.), the Kwanjeong Educational
Foundation (fellowship to J.C.), and the Council for Interna-
tional Exchange of Scholars (Fulbright Scholar award to
J.M.M.-M.). We thank the Caltech Center for Catalysis and
Chemical Synthesis for use of instrumentation. D.T.Z. and J.C.
are graduate students in the Department of Chemistry at the
Massachusetts Institute of Technology.
(11) Lotito, K. J.; Peters, J. C. Chem. Commun. 2010, 46, 3690−3692.
(12) Creutz, S. E.; Lotito, K. J.; Fu, G. C.; Peters, J. C. Science 2012,
338, 647−651.
(13) Bissember, A. C.; Lundgren, R. J.; Creutz, S. E.; Peters, J. C.; Fu,
G. C. Angew. Chem., Int. Ed. 2013, 52, 5129−5133.
(14) For examples of and leading references to recent mechanistic
studies of nonphotoinduced Ullmann C−N couplings, see: (a) Jones,
G. O.; Liu, P.; Houk, K. N.; Buchwald, S. L. J. Am. Chem. Soc. 2010,
132, 6205−6213. (b) Giri, R.; Hartwig, J. F. J. Am. Chem. Soc. 2010,
132, 15860−15863. (c) Casitas, A.; King, A. E.; Parella, T.; Costas, M.;
Stahl, S. S.; Ribas, X. Chem. Sci. 2010, 1, 326−330. (d) Hickman, A. J.;
Sanford, M. S. Nature 2012, 484, 177−185.
REFERENCES
■
(1) For leading references, see: (a) Lawrence, S. A. Science of
Synthesis; Georg Thieme Verlag: New York, 2008; Vol. 40a, pp 501−
577. (b) Scholz, U.; Schlummer, B. Science of Synthesis; Georg Thieme
Verlag: New York, 2007; Vol. 31b, pp 1565−1678. (c) Travis, A. S. In
Chemistry of Anilines; Rapaport, Z., Ed.; John Wiley & Sons: New York,
2007; Vol. 1, pp 1−73. (d) Travis, A. S. In Chemistry of Anilines;
Rapaport, Z., Ed.; John Wiley & Sons: New York, 2007; Vol. 2, pp
715−782. (e) Atorvastatin in the Management of Cardiovascular Risk:
From Pharmacology to Clinical Evidence; Grundy, S., Ed.; Kluwer:
Auckland, New Zealand, 2007.
(15) We have recently determined that photoinduced, copper-
catalyzed C−S bond formation can be achieved: Uyeda, C.; Tan, Y.;
Fu, G. C.; Peters, J. C. J. Am. Chem. Soc. 2013, 135, 9548−9552.
(16) For example, see: (a) Table 1 in ref 6b. (b) Reactions and
Applications of Indoles; Gribble, G. W., Ed.; Springer: Berlin, 2010.
(c) Rahman, A.-u.; Basha, A. Indole Alkaloids; Harwood: Amsterdam,
1997. (d) Indoles; Sundberg, R. J., Ed.; Academic: San Diego, CA,
1996.
(17) For pioneering studies of thermal copper-catalyzed N-arylations
of indoles (110 °C), see: (a) Klapars, A.; Antilla, J. C.; Huang, X.;
Buchwald, S. L. J. Am. Chem. Soc. 2001, 123, 7727−7729. (b) Antilla, J.
C.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 11684−
11688.
(18) For a review of N-arylations of indoles via cross-coupling, see:
Xu, H. Mini-Rev. Org. Chem. 2009, 6, 367−377.
(2) (a) In the following reference, “heteroatom alkylation &
arylation” was the grouping with the highest frequency use (19%; see
Table 2), and within this grouping “N-substitution” was the most
common transformation (57%; see Table 10): Carey, J. S.; Laffan, D.;
Thomson, C.; Williams, M. T. Org. Biomol. Chem. 2006, 4, 2337−
2347. (b) See also Table 2 in the following paper: Roughley, S. D.;
Jordan, A. M. J. Med. Chem. 2011, 54, 3451−3479.
(19) (a) On a gram scale (1.3 g of product), the coupling of indole
with iodobenzene proceeds in 65% yield. (b) If the coupling of indole
with iodobenzene is carried out under our standard conditions, but
under air rather than nitrogen, then N-phenylindole is produced in
poor yield. (c) In initial experiments under our standard conditions, a
very electron-poor indole, as well as an iodothiophene, an iodoaniline,
and an iodo-substituted α-aryl ester, cross-coupled in poor yield. (d)
For N-arylations that proceed in modest yield, small amounts of
unreacted nucleophile and of homocoupled electrophile are sometimes
observed. (e) Some of these cross-couplings also proceed at other
wavelengths (e.g., 300 and 350 nm); however, irradiation at 254 nm
provides the most general method.
(20) Benzimidazoles are privileged scaffolds in medicines. For
example, see: (a) Table 2 in ref 6b. (b) Recent reviews: Bansai, Y.;
Silakari, O. Bioorg. Med. Chem. 2012, 20, 6208−6236. Narasimhan, B.;
Sharma, D.; Kumar, P. Med. Chem. Res. 2012, 21, 269−283.
(21) For a discussion of the significance of N-arylbenzimidazoles and
N-arylimidazoles, as well as an effective copper-catalyzed method for
their synthesis, see: Altman, R. A.; Koval, E. D.; Buchwald, S. L. J. Org.
Chem. 2007, 72, 6190−6199. See also: Antilla, J. C.; Baskin, J. M.;
Barder, T. E.; Buchwald, S. L. J. Org. Chem. 2004, 69, 5578−5587. In
addition, see ref 17a.
(3) Ullmann, F. Ber. Dtsch. Chem. Ges. 1903, 36, 2382−2384.
(4) For recent reviews, see: (a) Senra, J. D.; Aguiar, L. C. S.; Simas, A.
B. C. Curr. Org. Synth. 2011, 8, 53−78. (b) Jiang, Y.; Ma, D. In
Catalysis without Precious Metals; Bullock, M., Ed.; Wiley-Blackwell:
Weinheim, Germany, 2010; pp 213−233. (c) Penn, L.; Gelman, D.
Chemistry of Organocopper Compounds; John Wiley & Sons: Chi-
chester, U.K., 2009; Part 2, pp 881−990.
(5) For leading references, see: (a) Surry, D. S.; Buchwald, S. L.
Chem. Sci. 2011, 2, 27−50. (b) Hartwig, J. F.; Shekhar, S.; Shen, Q.;
Barrios−Landeros, F. In Chemistry of Anilines; Rapaport, Z., Ed.; John
Wiley & Sons: New York, 2007; Vol. 1, pp 455−536.
(6) For example, see: (a) Figure 8 in ref 2b. (b) Welsch, M. E.;
Snyder, S. A.; Stockwell, B. R. Curr. Opin. Chem. Biol. 2010, 14, 347−
361. (c) The Alkaloids: Chemistry and Biology; Knolker, H.-J., Ed.;
̈
Elsevier: San Diego, CA, 2012; Vol. 71. (d) Zirngibl, L. Antifungal
Azoles; Wiley-VCH: Weinheim, Germany, 1998. (e) Imidazole
Receptors and Their Endogenous Ligands; Gothert, M., Molderings, G.
J., Reis, D. J., Eds.; New York Academy of Sciences: New York, 1999.
(7) For leading references, see: Beletskaya, I. P.; Cheprakov, A. V.
Organometallics 2012, 31, 7753−7808.
(8) The price of CuI from Aldrich (2012−2014 catalog) is ∼$42 per
mole.
(22) For a review of copper-catalyzed N-arylations of azoles, see:
Sorokin, V. I. Mini-Rev. Org. Chem. 2008, 5, 323−330. See also ref 7.
(23) The Ullmann arylation of 5-substituted benzimidazoles has been
reported to lead to a 1:1 mixture of isomers. For example, see: Combs,
A. P.; Saubern, S.; Rafalski, M.; Lam, P. Y. S. Tetrahedron Lett. 1999,
40, 1623−1626.
(24) Under our standard conditions, 7-methylbenzimidazole cross-
couples in modest yield (∼25% with mesityl iodide and ∼45% with
iodobenzene), with regioselectivity for C−N bond formation at the
less hindered site that is dependent on the identity of the aryl iodide
(>20:1 and 2.4:1, respectively).
(25) For two recent studies of carbazoles that have interesting
properties, see: (a) Hirota, T.; Lee, J. W.; St. John, P. C.; Sawa, M.;
Iwaisako, K.; Noguchi, T.; Pongsawakul, P. Y.; Sonntag, T.; Welsh, D.
K.; Brenner, D. A.; Doyle, F. J., III; Schultz, P. G.; Kay, S. A. Science
2012, 337, 1094−1097. (b) Uoyama, H.; Goushi, K.; Shizu, K.;
Nomura, H.; Adachi, C. Nature 2012, 492, 234−238.
(9) The limits for metal impurities set by the United States
Pharmacopeial Convention and by the European Medicines Agency
are ≥10 times greater for Cu than for Pd: Cu, 1000−2500 μg/day; Pd,
100 μg /day: (a) Chemical Tests and Assays: Section (232) Elemental
ImpuritiesLimits, second supplement to USP 35-NF 30; U.S.
Pharmacopeial Convention: Rockville, MD, 2012. (b) Guideline on
the Specification Limits for Residues of Metal Catalysts or Metal Reagents;
Doc. Ref. EMEA/CHMP/SWP/4446/2000; Committee for Medicinal
Products for Human Use, European Medicines Agency: London, Feb
21, 2008.
(10) We are not aware of reports of copper-catalyzed N-arylations of
indoles, benzimidazoles, or carbazoles with aryl halides that proceed at
room temperature. For examples of N-arylations of imidazoles with
aryl iodides (but not aryl bromides or chlorides), see: (a) Yang, C.-T.;
Fu, Y.; Huang, Y.-B.; Yi, J.; Guo, Q.-X.; Liu, L. Angew. Chem., Int. Ed.
2009, 48, 7398−7401. (b) Arundhathi, R.; Kumar, D. C.; Sreedhar, B.
Eur. J. Org. Chem. 2010, 3621−3630. (c) Tao, C.-Z.; Liu, W.-W.; Sun,
E
dx.doi.org/10.1021/ja4060806 | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX